Skip to main content
Log in

Das Carotinoidmuster und die Verbreitung des lichtinduzierten Xanthophyllcyclus in verschiedenen Algenklassen

IV. Cyanophyceae und Rhodophyceae

The carotenoid pattern and the occurrence of the light induced xanthophyll cycle in various classes of algae

IV. Cyanophyceae and rhodophyceae

  • Published:
Archiv für Mikrobiologie Aims and scope Submit manuscript

Summary

The pigments of some blue-green and red algae have been identified and quantitatively determined by methods discussed in Hager and Stransky (1970a).

  1. 1.

    a great deal of the primary carotenoids of the blue-green algae are ketocarotenoids, which in other groups of algae are present as secondary carotenoids. Similar to certain green algae the amount of these pigments is increased during nitrogen starvation, causing a red colouring of such cultures.

  2. 2.

    In contrast to other divisions of algae the blue-green algae contain also monocyclic carotenoid glycosides (myxoxanthophyll), which besides acyclic carotenoids are typical for bacteria.

  3. 3.

    The keto-carotenoids of the blue-green algae are mainly substituted at C4 and C4′. Such carotenoids are characteristic for a great deal of animals, especially for members of Anostraca and Cladocera (Lee, 1966; Lee et al., 1967; Czeczuga and Czerpak, 1966; Gilchrist, 1968).

  4. 4.

    The blue-green algae are not able to synthesize α-carotene and its derivatives.

  5. 5.

    Some blue-green algae can form allenic carotenoids, which have been described for the first time; they have been named caloxanthin (3,3′-dihydroxy-5-hydro-7-dehydro-β-carotene), and nostoxanthin(3,3′-dihydroxy-5,5′-dihydro-7,7′-didehydro-β-carotene).

  6. 6.

    The investigated red and blue-green algae contain no carotenoid epoxides. Due to this fact no light induced xanthophyll interconversions are detectable.

  7. 7.

    However, by short illumination a reversible change in the absorption spectrum of phycoerythrins takes place.

Zusammenfassung

Die Pigmente der Blau- und Rotalgen wurden nach den bei Hager u. stransky (1970a) angegebenen Methoden identifiziert und ihre Mengen bestimmt.

  1. 1.

    In der Primärcarotinoid-Ausstattung der Blaualgen sind in erheblichen Mengenanteilen Ketocarotinoide enthalten, welche bei anderen Algengruppen nur als Sekundärcarotinoide zu finden sind. Sie können allerdings ähnlich wie bei bestimmten Grünalgen unter Stickstoffmangel derart vermehrt werden, daß sie eine Rotfärbung solcher Kulturen hervorrufen.

  2. 2.

    Die Blaualgen besitzen im Gegensatz zu den anderen Algen-Abteilungen auch monocyclische Carotinoid-Glycoside (Myxoxanthophyll), welche neben acyclischen Carotinoiden für die Bakterien typisch sind.

  3. 3.

    Die Ketocarotinoide der Blaualgen sind bevorzugt an C4 und C4′ substituiert. Derartige Carotinoide sind charakteristisch für eine große Anzahl von Tieren, insbesondere für Vertreter der Anostracen und Cladoceren (Lee, 1966; Lee et al., 1967; Czeczuga u. Czerpak, 1966; Gilchrist, 1968).

  4. 4.

    Die Blaualgen sind nicht zur Synthese von α-Carotin und seinen Derivaten befähigt.

  5. 5.

    Einige Blaualgen können die hier erstmals beschriebenen Allen-Carotinoide Caloxanthin (3,3′-Dihydroxy-5-Hydro-7-Dehydro-β-Carotin) und Nostoxanthin (3,3′-Dihydroxy-5,5′-Dihydro-7,7′-Didehydro-β-Carotin) bilden.

  6. 6.

    Die untersuchten Rotalgen und Blaualgen besitzen keine Carotinoid-Epoxide. Entsprechend dieser Tatsache konnten hier auch keine lichtinduzierten Xanthophyll-Umwandlungen beobachtet werden.

  7. 7.

    Durch kurzzeitige Belichtung können aber reversible Änderungen im Absorptions-Spektrum von Phycoerythrinen erfolgen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Aihara, M. S., Yamamoto, H. Y.: Occurrence of antheraxanthin in two Rhodophyceae, Acanthophora spicifera and Gracilaria lichenoides. Phytochem. 7, 497–499 (1968).

    Google Scholar 

  • Allen, M. B.: The cultivation of Myxophyceae. Arch. Mikrobiol. 17, 34–53 (1952).

    Google Scholar 

  • —, Arnon, D. I.: Studies on nitrogen-fixing blue-green algae. I. Growth and nitrogen fixation by Anabaena cylindrica. Plant Physiol. 30, 366–372 (1955a).

    Google Scholar 

  • ——: Studies on nitrogen-fixing blue-green algae. II. The sodium requirement of Anabaena cylindrica. Plant Physiol. 8, 653–660 (1955b).

    Google Scholar 

  • Allen, M. B., Fries, L., Goodwin, T. W., Thomas, T. M.: The carotenoids of algae: Pigments from some Cryptomonads, a Heterokont and some Rhodophyta. J. gen. Microbiol. 34, 259–267 (1964).

    Google Scholar 

  • Brody, M., Emerson, R.: The effect of wavelength and intensity of light on the proportion of pigments in Porphyridium cruentum. Amer. J. Bot. 46, 433–440 (1959).

    Google Scholar 

  • Chapman, D. J.: The pigments of symbiotic algae of Cyanophora paradoxa, Glaucocystis nostochinearum and two Rhodophyceae, Porphyridium aerugineum and Asterocystis ramosa. Arch. Mikrobiol. 55, 17–25 (1966).

    Google Scholar 

  • Czeczuga, B., Czerpak, R.: Carotenoids in certain Diaptomidae. Comp. Biochem. Physiol. 17, 523–534 (1966).

    Google Scholar 

  • Desikachary, T. V.: Cyanophyta. Acad. Press N. Y. 1959.

    Google Scholar 

  • Drews, G.: Zur Kultur der Cyanophyceen. Naturwissenschaften 42, 397–398 (1955).

    Google Scholar 

  • Fogg, G. E.: Studies on nitrogen fixing by blue-green algae. I. Nitrogen fixation by Anabaena cylindrica. J. exp. Biol. 19, 78–87 (1942).

    Google Scholar 

  • Fott, B.: Algenkunde. Jena: Fischer 1959.

    Google Scholar 

  • Francis, G. W., Hertzberg, S., Andersen, K., Liaaen-Jensen, S.: New carotenoid glycocides from Oscillatoria limosa. Phytochemistry 9, 629–635 (1970).

    Google Scholar 

  • Fries, E.: On the culture of axenic red algae. Physiol. Plant. (Copenh.) 16, 695–698 (1963).

    Google Scholar 

  • Gerloff, G. C., Fitzgerald, C. P., Skoog, F.: The isolation, purification and nutrient solution requirements of blue-green algae. Amer. J. Bot. 37, 216–218 (1950).

    Google Scholar 

  • Gilchrist, B. M.: Distribution and relative abundance of carotenoid pigments in Anostraca. Comp. Biochem. Physiol. 24, 123–147 (1968).

    Google Scholar 

  • Hager, A.: Lichtbedingte pH-Erniedrigung in einem Chloroplasten-Kompartiment als Ursache der enzymatischen Violaxanthin→Zeaxanthin-Umwandlung; Beziehungen zur Photophosphorylierung. Planta (Berl.) 89, 224–243 (1969).

    Google Scholar 

  • —, Stransky, H.: Das Carotinoidmuster und die Verbreitung des lichtinduzierten Xanthophyll-Cyclus in verschiedenen Algenklassen. I. Methoden zur Identifizierung der Pigmente. Arch. Mikrobiol. 71, 132–163 (1970a).

    Google Scholar 

  • ——: Das Carotinoidmuster und die Verbreitung des lichtinduzierten Xanthophyll-Cyclus in verschiedenen Algenklassen. III. Grünalgen. Arch. Mikrobiol. 72, 68–83 (1970b).

    Google Scholar 

  • Hertzberg, S., Liaaen-Jensen, S. L.: The carotenoids of blue-green algae. I. The carotenoids of Oscillatoria rubescens and an Athrospira spec. Phytochem. 5, 557–563 (1966a).

    Google Scholar 

  • ——: The carotenoids of blue-green algae. II. The carotenoids of Aphanizomenon flos-aquae. Phytochem. 5, 565–570 (1966b).

    Google Scholar 

  • ——: The carotenoids of blue-green algae. III. A comparative study of mutatochrome and flavacin. Phytochem. 6, 1119–1126 (1967).

    Google Scholar 

  • ——: The structure of myxoxanthophyll. Phytochemistry 8, 1259–1280 (1969a).

    Google Scholar 

  • ——: The structure of oscillaxanthin. Phytochemistry 8, 1281–1292 (1969b).

    Google Scholar 

  • Hirayama, O.: Lipids and lipoprotein complex in photosynthetic tissues. II. Pigments and lipids in the blue-green alga Anacystis nidulans. J. Biochem. 61, 179–185 (1967).

    Google Scholar 

  • Jones, L. W., Myers, J.: Pigment variations in Anacystis nidulans induced by light of selected wavelengths. J. Phycol. 1, 6–13 (1965).

    Google Scholar 

  • Karrer, P., Jucker, E.: Carotinoide. Basel: Birkhäuser 1948.

    Google Scholar 

  • Katayama, T.: Comparative biochemistry of carotenoids in algae. I. The carotenoids in Porphyra tenera. Nippon Suisan Gakkaishi 30, 436–439 (1964).

    Google Scholar 

  • Koch, W.: Untersuchungen an bakterienfreien Massenkulturen von Porphyridium cruentum. Arch. Mikrobiol. 18, 232–241 (1953).

    Google Scholar 

  • —: Verzeichnis der Sammlung von Algenkulturen am Pflanzenphysiologischen Institut der Univ. Göttingen. Arch. Mikrobiol. 47, 402–432 (1964).

    Google Scholar 

  • Kratz, W. A., Myers, J.: Nutrition and growth of several blue-green algae. Amer. J. Bot. 42, 282–287 (1955).

    Google Scholar 

  • Krinsky, N. I., Goldsmith, T. H.: The carotenoids of the flagellated alga Euglena gracilis. Arch. Biochem. 91, 271–279 (1960).

    Google Scholar 

  • Lee, W. L.: Pigmentation of the marine isopod Idothea granulosa. Comp. Biochem. Physiol. 19, 13–27 (1966).

    Google Scholar 

  • —, Gilchrist, G. M., Dales, R. P.: Carotenoid pigments in Sabella penicillus. J. Marine Biol. Ass. U. K. 47, 33–37 (1967).

    Google Scholar 

  • Lefrançon, G. M.: Sur les pigments d'une algue bleue: Oscillatoria subbrevis. Rev. Cytol. Biol. Veg. 22, 37–45 (1960).

    Google Scholar 

  • Palla, J.-C., Busson, F.: Etude des caroténoides de Spirulina platensis (Gom.) Geitler (Cyanophycées). C. R. Acad. Sci. (Paris) 269, 1704–1707 (1969).

    Google Scholar 

  • Pearson, I. E., Kingsbury, I. M.: Culturally induced variation in 4 morphologically diverse blue-green algae. Amer. J. Bot. 53, 192–200 (1966).

    Google Scholar 

  • Round, F. E.: Biologie der Algen. Stuttgart: G. Thieme 1968

    Google Scholar 

  • Singh, R. N., Singh, H. N.: UV-Induced mutants of blue-green algae. I. Anabaena cycadeae. Arch. Mikrobiol. 48, 109–117 (1964).

    Google Scholar 

  • Sirenko, L. A.: Specificity of pigment systems in blue-green algae. Akad. Nauk. Ukr. SSR, Resp. Mezhoedomsto Sb. 1965, pp. 152–159.

  • Starr, R. C.: The culture collection of algae of Indiana University. Amer. J. Bot. 51, 1013–1044 (1964).

    Google Scholar 

  • Stransky, H., Hager, A.: Das Carotinoidmuster und die Verbreitung des lichtinduzierten Xanthophyll-Cyclus in verschiedenen Algenklassen. II. Xanthophyceae. Arch. Mikrobiol. 71, 132–163 (1970).

    Google Scholar 

  • Wolk, P. C.: Physiological basis of the pattern of vegetative growth of a blue-green alga. Proc. nat. Acad. Sci. (Wash.) 57, 1246–1251 (1967).

    Google Scholar 

  • Yocum, C. S., Blinks, L. R.: Light induced efficiency and pigment alterations in red algae. J. gen. Physiol. 41, 1113–1117 (1958).

    Google Scholar 

  • Zehnder, A., Gorham, P. R.: Factors influencing the growth of Microcystis aeruginosa. Canad. J. Microbiol. 6, 645–660 (1960).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stransky, H., Hager, A. Das Carotinoidmuster und die Verbreitung des lichtinduzierten Xanthophyllcyclus in verschiedenen Algenklassen. Archiv. Mikrobiol. 72, 84–96 (1970). https://doi.org/10.1007/BF00411017

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00411017

Navigation