Skip to main content
Log in

Structure and biosynthesis of teichoic acids in the cell walls of Staphylococcus xylosus DSM 20266

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The simultaneous occurrence of a N-acetylglucosaminyl poly(ribitolphosphate) (β-GlcNAc) and a N-acetylglucosaminyl poly(glycerolphosphate) (α-GlcNAc) in the cell walls of Staphylococcus xylosus DSM 20266 was demonstrated by different experimental lines:

(1) Fractionation of extracted cell wall teichoic acid on DEAE-cellulose, (2) investigation of the composition of cell walls in the growth cycle, (3) in vitro biosynthesis using crude membranes as the source of enzyme.

The polymerization of these polymers starts from CDP-ribitol and CDP-glycerol, respectively. In the presence of UDP-N-acetylglucosamine both polymers are substituted with N-acetylglucosamine at a level and with the identical anomeric configuration found in the native cell wall teichoic acids. The in vitro biosynthesis of poly(glycerolphosphate) was unique in that it was highly stimulated by UDP-N-acetylglucosamine and to a lower extent by other UDP-activated sugars. Kinetic studies have provided evidence that this stimulation is due to an increase of V max while K m is unchanged. Competition experiments have indicated that poly(ribitolphosphate) and poly(glycerolphosphate) were synthesized in the in vitro system in a close spatial relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ADP:

adenosine 5′-diphospho

CDP:

cytidine 5′-diphospho

GDP:

guanosine 5′-diphospho

GalNAc:

N-acetyl-galactosamine

Glc:

glucose, glucosyl

GlcNAc:

N-acetyl-glucosamine

N:

acetylglucosaminyl

GlcUA:

glucuronic acid

Gro:

glycerol

Man:

mannose, mannosyl

Rit:

ribitol

SDS:

sodium dodecyl sulfate

UDP:

uridine 5′-diphospho

References

  • Ames BW (1966) Assay of inorganic phosphate, total phosphate and phosphatases. In: Colowick SP, Kaplan NO (eds) Methods in Enzymology, vol VIII. Academic Press, New York, pp 115–118

    Google Scholar 

  • Anderton WJ, Wilkinson SG (1980) Evidence for the presence of a new class of teichoic acid in the cell wall of bacterium NCTC 9742. J Gen Microbiol 118:343–351

    Google Scholar 

  • Archibald AR, Coapes HE (1971) The wall teichoic acids of Lactobacillus plantarum N.I.R.D. C106. Location of phosphodiester group and separation of chains. Biochem J 124:449–460

    Google Scholar 

  • Archibald AR, Heptinstall S (1971) The teichoic acids of Micrococcus sp. 24. Biochem J 125:361–363

    Google Scholar 

  • Archibald AR, Baddiley J, Button D, Heptinstall S, Stafford GH (1968) Occurrence of polymers containing GlcNAc-1-P in bacterial walls. Nature (London) 219:855–856

    Google Scholar 

  • Baddiley J (1972) Teichoic acids in cell walls and membranes of bacteria. In: Campbell PN, Dickens F (eds) Essays in biochemistry, vol VIII. Academic Press, New York, pp 35–77

    Google Scholar 

  • Bergmeyer HU (1974) Methoden der enzymatischen Analyse. Verlag Chemie, Weinheim

    Google Scholar 

  • Bracha R, Glaser L (1976a) An intermediate in teichoic acid biosynthesis. Biochem Biophys Res Commun 72:1091–1098

    Google Scholar 

  • Bracha R, Chang M, Fiedler F, Glaser L (1978) Biosynthesis of teichoic acids. Methods in Enzymology 50:387–402

    Google Scholar 

  • Burger MM, Glaser L (1966) The synthesis of teichoic acids. V. Polyglucosylglycerol phosphate and polygalactosylglycerol phosphate. J Biol Chem 241:494–506

    Google Scholar 

  • Eggstein M, Kuhlmann E (1974) Triglyceride und Glycerin (alkalische Verseifung). In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse, vol II. Verlag Chemie, Weinheim, pp 1871–1877

    Google Scholar 

  • Endl J, Seidl HP, Fiedler F, Schleifer KH (1983) Chemical composition and structure of cell wall teichoic acids of staphylococci. Arch Microbiol 135:215–223

    Google Scholar 

  • Fiedler F (1981) On the participation of lipoteichoic acid in the biosynthesis of wall teichoic acids. In: Shockman GD, Wicken AJ (eds) Chemistry and biological activities of bacterial surface amphiphiles. Academic Press, New York, pp 195–208

    Google Scholar 

  • Fiedler F, Glaser L (1974a) The synthesis of polyribitol phosphate. I. Purification of polyribitol phosphate polymerase and lipoteichoic acid carrier. J Biol Chem 249:2684–2689

    Google Scholar 

  • Fiedler F, Glaser L (1974b) The synthesis of polyribitol phosphate. II. On the mechanism of polyribitol phosphate polymerase. J Biol Chem 249:2690–2695

    Google Scholar 

  • Fiedler F, Mauck J, Glaser L (1974) Problems in cell wall assembly. Ann NY Acad Sci 235:198–209

    Google Scholar 

  • Fiedler F, Schäffler MJ, Stackebrandt E (1981) Biochemical and nucleic acid hybridization studies on Brevibacterium linens and related strains. Arch Microbiol 129:85–93

    Google Scholar 

  • Fischer W, Koch HU (1981) Alanine ester substitution and its effect on the biological properties of lipoteichoic acids. In: Shockman GD, Wicken AJ (eds) Chemistry and biological activities of bacterial surface amphiphiles. Academic Press, New York, pp 181–194

    Google Scholar 

  • Fischer W, Koch HU, Rösel P, Fiedler F, Schmuck L (1980a) Structural requirements for lipoteichoic acid carrier for recognition by the poly(ribitolphosphate) polymerase from Staphylococcus aureus H. A. study of various lipoteichoic acids, derivatives and related compounds. J Biol Chem 255:4550–4556

    Google Scholar 

  • Fischer W, Koch HU, Rösel P, Fiedler F (1980b) Native alanine ester-containing lipoteichoic acids do not act as lipoteichoic acid carrier. Isolation, structural and functional characterization. J Biol Chem 255:4557–4562

    Google Scholar 

  • Fromm HJ (1974) D-Ribulose. In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse, vol II. Verlag Chemie, Weinheim, pp 1398–1402

    Google Scholar 

  • Hancock IC, Wiseman G, Baddiley J (1976) Biosynthesis of the unit that links teichoic acid to the bacterial wall. J Bacteriol 125:880–886

    Google Scholar 

  • Hartree EF (1972) Determination of protein: A modification of the Lowry method that gives a linear photometric response. Anal Biochem 48:422–427

    Google Scholar 

  • Johnson AR (1971) Improved method of hexosamine determination. Anal Biochem 44:628–635

    Google Scholar 

  • Kusser W, Fiedler F (1983) Teichoicase from Bacillus subtilis Marburg. J Bacteriol 155:302–310

    Google Scholar 

  • Kusser W, Fiedler F (1984) A novel glycerophosphodiesterase from Bacillus pumilus. FEBS Lett 166:301–306

    Google Scholar 

  • Mauck J, Glaser L (1972) An acceptor dependent polyglycerol-phosphate polymerase. Proc Natl Acad Sci USA 69:2386–2390

    Google Scholar 

  • Nagata Y, Burger MM (1974) Wheat germ agglutinin. Molecular characteristics and specificity of sugar binding. J Biol Chem 249:3116–3122

    Google Scholar 

  • Nathenson SG, Strominger JL (1963) Enzymatic synthesis of N-acetylglucosaminylribitol linkages in teichoic acid from Staphylococcus aureus, strain Copenhagen. J Biol Chem 238:3161–3169

    Google Scholar 

  • Reissig JL, Strominger JL, Leloir LF (1955) A modified colorimetric method for the estimation of N-acetylamino sugars. J Biol Chem 217:959–966

    Google Scholar 

  • Sanderson AR, Strominger JL, Nathenson SG (1962) Chemical structure of teichoic acid from Staphylococcus aureus, strain Copenhagen. J Biol Chem 237:3603–3613

    Google Scholar 

  • Schleifer KH, Kandler O (1967) Zur chemischen Zusammensetzung der Zellwände der Streptokokken. I. Zur Aminosäuresequenz des Mureins von Str. thermophilus and Str. faecalis. Arch Mikrobiol 57:335–365

    Google Scholar 

  • Schleifer KH, Kocur M (1973) Classification of staphylococci based on chemical and biochemical properties. Arch Mikrobiol 93:65–85

    Google Scholar 

  • Trevelyan WE, Procter DD, Harrison JS (1950) Detection of sugars on paperchromatograms. Nature (London) 116:444–445

    Google Scholar 

  • Ward JB (1981) Teichoic and teichuronic acids: Biosynthesis, assembly, and location. Bacteriol Rev 45:211–243

    Google Scholar 

  • Wheat RW (1966) Analysis of hexoamines in bacterial polysaccharides by chromatographic procedures. In: Colowick SP, Kaplan NO (eds) Methods in Enzymology, vol VIII. Academic Press, New York, pp 60–78

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fiedler, F., Steber, J. Structure and biosynthesis of teichoic acids in the cell walls of Staphylococcus xylosus DSM 20266. Arch. Microbiol. 138, 321–328 (1984). https://doi.org/10.1007/BF00410898

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00410898

Key words

Navigation