Skip to main content
Log in

Antibodies specific for DNA components structurally modified by chemical carcinogens

  • Guest Editorial
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Adamkiewicz J, Eberhardt W, Langenberg U, Müller R, Rajewsky MF (1981) Monoclonal antibodies for the specific detection and quantification of DNA components structurally modified by alkylating carcinogens. Proc. Sect. Exp. Cancer Res. German Cancer Soc. J Cancer Res Clin Oncol 99:A21

  • Adamkiewicz J, Rajewsky MF (1982) (Submit. for publ.)

  • Baird WM (1979) The use of radioactive carcinogens to detect DNA modifications. In: Grover PL (ed) Chemical carcinogens and DNA. CRC Press, Boca Raton, pp 59–83

    Google Scholar 

  • Beiser SM, Tanenbaum SW, Erlanger BF (1968) Purine- and pyrimidine-protein conjugates. Meth Enzymol 12:889–893

    Google Scholar 

  • Boissonnas RA (1951) Une nouvelle methode de synthèse peptidique. Helv Chim Acta 34:874–879

    Google Scholar 

  • Briscoe WT, Spizizen J, Tan EM (1978) Immunological detection of O6-methylguanine in alkylated DNA. Biochemistry 17:1896–1901

    Google Scholar 

  • Brunngraber EF, Chargaff E (1967) Purification and properties of a nucleoside phosphotransferase from carrot. J Biol Chem 242:4834–4840

    Google Scholar 

  • Cornelis JJ, Rommelaere J, Urbain J, Errera M (1977) A sensitive method for measuring pyrimidine dimers in situ. Photochem Photobiol 26:241–246

    Google Scholar 

  • De Murcia G, Lang MCE, Freund AM, Fuchs RPP, Daune MP, Sage E, Leng M (1979) Electron-microscopic visualization of N-acetoxy-N-2-acetylaminofluorene binding sites in Col E-1 DNA by means of specific antibodies. Proc Natl Acad Sci USA 76:6076–6080

    Google Scholar 

  • Erlanger BF (1973) Principles and methods for the preparation of drug-protein conjugates for immunological studies. Pharmacol Rev 25:271–280

    Google Scholar 

  • Erlanger BF, Beiser SM (1964) Antibodies specific for ribonucleosides and ribonucleotides and their reaction with DNA. Proc Natl Acad Sci USA 52:68–74

    Google Scholar 

  • Farr RS (1958) A quantitative immunological measure of the primary interaction between I BSA and antibody. J Infect Dis 103:239–262

    Google Scholar 

  • Fink A, Hotz G (1977) Immunological reaction of UV-induced radiation damage in coliphage DNA. Z Naturforsch 32c:544–549

    Google Scholar 

  • Goth R, Rajewsky MF (1974) Molecular and cellular mechanisms associated with pulse-carcinogenesis in the rat nervous system by ethylnitrosourea: ethylation of nucleic acids and elimination rates of ethylated bases from the DNA of different tissues. Z Krebsforsch 82:37–64

    Google Scholar 

  • Grabar P, Avrameas S, Taudou B, Salomon JC, (1968) Formation and isolation of antibodies specific for nucleosides. In: Plescia OJ, Braun W (eds) Nucleic acids in immunology. Springer, Berlin Heidelberg New York, pp 79–87

    Google Scholar 

  • Grover PL (ed) (1979) Chemical carcinogens and DNA. CRC Press, Boca Raton

    Google Scholar 

  • Guigues M, Leng M (1979) Reactivity of antibodies to guanosine modified by the carcinogen N-acetoxy-N-2-aminofluorene. Nucl Acids Res 6:733–744

    Google Scholar 

  • Halloran MJ, Parker CW (1966) The preparation of nucleotide-protein conjugates: Carbodiimides as coupling agents. J Immunol 96:373–378

    Google Scholar 

  • Hannske F, Cramer F (1979) Modification of the 3′-terminus of t-RNA by periodate oxidation and subsequent reaction with hydrazides. Meth Enzymol 59:172–181

    Google Scholar 

  • Harris CC, Yolken RH, Krokan H, Hsu IC (1979) Ultrasensitive enzymatic radioimmunoassay: Application to detection of cholera toxin and rotavirus. Proc. Natl Acad Sci USA 76:5336–5339

    Google Scholar 

  • Haugen Å, Groopman JD, Hsu IC, Goodrich GR, Wogan JN, Harris CC (1981) Monoclonal antibody to aflatoxin B1 modified DNA detected by enzyme immunoassay. Proc Natl Acad Sci USA 78:4124–4127

    Google Scholar 

  • Hoard DE, Ott DG (1965) Conversion of mono- and oligodeoxynucleotides to 5′-triphosphates. J Am Chem Soc 87:1785–1788

    Google Scholar 

  • Hsu IC, Poirier MC, Yuspa SH, Grunberger D, Weinstein IB, Yolken RH, Harris CC (1981) Measurement of benzo(a)pyrene-DNA adducts by enzyme immunoassays and radioimmunoassay. Cancer Res 41:1091–1095

    Google Scholar 

  • Hsu IC, Poirier MC, Yuspa SH, Yolken RH, Harris CC (1980) Ultrasensitive enzymatic radioimmunoassay (USERIA) detects femtomoles of acetylaminofluorene-DNA adducts. Carcinogenesis 1:455–458

    Google Scholar 

  • Jarzabek-Chorzelska M, Zarebska Z, Wolska H, Rzesa G (1976) Immunological phenomena induced by UV rays. Acta Derm Venereol (Stockh) 56:15–18

    Google Scholar 

  • Köhler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature (Lond) 256:495–497

    Google Scholar 

  • Köster H, Heidmann W (1973) Eine neue Konzeption zur Synthese von Oligodesoxyribonucleotiden. Angew Chem 85:871–872

    Google Scholar 

  • Kriek E, van der Laken CJ, Welling M (1981) Immunological detection and quantification of the reaction products of 2-acetylaminofluorene with guanine in DNA. In: Bartsch, H and Armstrong, B (eds) Host factors in human carcinogenesis. IARC Scientific Publications No. 39. International Agency for Research on Cancer. Lyon (in press)

    Google Scholar 

  • Kyrtopoulos SA, Swann PF (1980) The use of radioimmunoassay to study the formation and disappearance of O6-methylguanine in mouse liver satelite and main-band DNA following dimethylnitrosamine administration. J Cancer Res Clin Oncol 98:127–138

    Google Scholar 

  • Lakhanisky T, Hendrickx B, Mouton RF, Cornelis JJ (1979) A serological study of removal of UV-induced photoproducts in the DNA of Tetrahymena pyriformis GL: Influence of caffeine, quinacrine and chloroquine. Photochem Photobiol 29:851–853

    Google Scholar 

  • Leng M, Sage E Fuchs RPP, Daune MP (1978) Antibodies to DNA modified by the carcinogen N-acetoxy-N-2-acetylaminofluorene. FEBS Letters 92:207–210

    Google Scholar 

  • Levine L, Seaman E, Hammerschlag E, Van Vunakis H (1966) Antibodies to photoproducts of deoxyribonucleic acids irradiated with ultraviolet light. Science 153:1666–1667

    Google Scholar 

  • Lucas CJ (1972) Immunological demonstration of the disappearance of pyrimidine dimers from nuclei of cultured human cells. Exp Cell Res 74:480–486

    Google Scholar 

  • Marutzky R, Peterssen-Borstel H, Flossdorf J, Kula MR (1974) Large scale enzymatic synthesis of nucleoside-5′-monophosphates using a phosphotransferase from carrots. Biotechnol Bioeng 16:1448–1458

    Google Scholar 

  • Meredith RD, Erlanger BF (1979) Isolation and characterization of rabbit anti-m7G-5′-P antibodies of high apparent affinity. Nucl Acids Res 6:2179–2191

    Google Scholar 

  • Miller JA, Miller EC (1979) Perspectives on the metabolism of chemical carcinogens. In: Emmelot P, Kriek E (eds) Environmental carcinogenesis. Elsevier/North-Holland Biomedical Press, Amsterdam, pp 25–50

    Google Scholar 

  • Müller R (1980) Calculation of average antibody affinity in anti-hapten sera from data obtained by competitive radioimmunoassay. J Immunol Meth 34:345–352

    Google Scholar 

  • Müller R, Drosdziok W, Rajewsky MF (1981) Enzymatic synthesis of double-stranded DNA containing radioactively labeled O6-ethylguanine as the only modified base. Carcinogenesis. 2:321–327

    Google Scholar 

  • Müller R, Rajewsky MF (1978) Sensitive radioimmunoassay for detection of O6-ethyldeoxyguanosine in DNA exposed to the carcinogen ethylnitrosourea in vivo or in vitro. Z Naturforsch 33c:897–901

    Google Scholar 

  • Müller R, Rajewsky MF (1979a) Immunological detection of ethylation products in DNA exposed to ethylnitrosourea in vivo or in vitro. In: Santi L, Parodi S (eds) Short-term tests for prescreening of potential carcinogens. Istituto Scientifico per lo Studio e la Cura dei Tumori, Genova, pp 70–75

    Google Scholar 

  • Müller R, Rajewsky MF (1980) Immunological quantification by high affinity antibodies of O6-ethyldeoxyguanosine in DNA exposed to N-ethyl-N-nitrosourea. Cancer Res 40:887–896

    Google Scholar 

  • Müller R, Rajewsky MF (1982) (Submit. for publ.)

  • Munns TW, Liszewski MK (1980) Antibodies specific for modified nucleosides: An immunochemical approach for the isolation and characterization of nucleic acids. Progr Nucl Acid Res Mol Biol 24:109–165

    Google Scholar 

  • Natali PG, Tan EM (1971) Immunological detection of thymidine photoproduct formation in vivo. Radiat Res 46:506–518

    Google Scholar 

  • Nehls P, Rajewsky MF (1981) Ethylation of fetal rat brain chromosomal DNA by ethylnitrosourea. Proc. Sect. Exp. Cancer Res. German Cancer Soc. J Cancer Res Clin Oncol 99:A38

  • Paules RS, Poirier MC, Mass MJ, Weinstein IB, Grunberger D, Yuspa SH, Kaufman DS (1981) Electron-microscopic visualization of benzo(a)pyrene-DNA adducts using highly specific antibody probes. Proc Am Assoc Cancer Res 22:86 [Abstr no 341]

    Google Scholar 

  • Pegg AE (1977) Formation and metabolism of alkylated nucleosides: Possible role in carcinogenesis by nitroso compounds and alkylating agents. Adv Cancer Res 25:195–269

    Google Scholar 

  • Plescia OJ (1968) Preparation and assay of nucleic acids as antigens. Meth Enzymol 12:893–899

    Google Scholar 

  • Plescia OJ, Braun W, Palczuk NC (1964) Production of antibodies to denatured deoxyribonucleic acid (DNA). Proc Natl Acad Sci USA 52:279–285

    Google Scholar 

  • Poirier MC (1981a) Antibodies to carcinogen-DNA adducts. J Natl Cancer Inst 67:515–519

    Google Scholar 

  • Poirier MC, Connor RJ (1981) A radioimmunoassay for acetylaminofluorene-DNA adducts. Meth Enzymol (in press)

  • Poirier MC, Dubin MA, Yuspa SH (1979) Formation and removal of specific acetylaminofluorene-DNA adducts in mouse and human cells measured by radioimmunoassay. Cancer Res 39:1377–1381

    Google Scholar 

  • Poirier MC, Santella R, Weinstein IB, Grunberger D, Yuspa SH (1980a) Quantitation of benzo(a)-pyrene-deoxyguanosine adducts by radioimmunoassay. Cancer Res 40:412–416

    Google Scholar 

  • Poirier MC, Williams GM, Yuspa SH (1980b) Effect of culture conditions, cell type, and species of origin on the distribution of acetylated and deacetylated deoxyguanosine C-8 adducts of N-acetox-2-acetylaminofluorene. Molec Pharmacol 18:581–587

    Google Scholar 

  • Poirier MC, Yuspa SH, Weinstein IB, Blobstein S (1977) Detection of carcinogen-DNA adducts by radioimmunoassay. Nature (Lond) 270:186–188

    Google Scholar 

  • Rajewsky MF (1980) Specificity of DNA damage in chemical carcinogenesis. In: Montesano R et al. (eds) Molecular and cellular aspects of carcinogen screening tests. IARC Scientific Publications No. 27. International Agency for Research on Cancer. Lyon, pp 41–54

    Google Scholar 

  • Rajewsky MF, Müller R, Adamkiewicz J, Drosdziok W (1980) Immunological detection and quantification of DNA components structurally modified by alkylating carcinogens (ethylnitrosourea). In: Pullman B et al. (eds) Carcinogenesis: Fundamental mechanisms and environmental effects. Reidel, Dordrecht, pp 207–218

    Google Scholar 

  • Saffhill R, Boyle JM (1981) Detection of carcinogen-DNA adducts by radio-immunoassay. Abstr. Proc. 22nd Ann. Gen. Meeting. Brit. Assoc. Cancer Res. Br J Cancer 44:275

    Google Scholar 

  • Sage E, Fuchs RPP, Leng M (1979) Reactivity of the antibodies to DNA modified by the carcinogen N-acetoxy-N-aminofluorene. Biochemistry 18:1328–1332

    Google Scholar 

  • Seaman E, Van Vunakis H, Levine L (1972) Serologic estimation of thymine dimers in the deoxyribonucleic acid of bacterial and mammalian cells following irradiation with ultraviolet light and postirradiation repair. J Biol Chem 247:5709–5715

    Google Scholar 

  • Singer B (1979) N-nitroso alkylating agents: Formation and persistence of alkyl derivatives in mammalian nucleic acids as contributing factors in carcinogenesis. J Natl Cancer Inst 62:1329–1339

    Google Scholar 

  • Spodheim-Maurizot M, Saint-Ruf G, Leng M (1979) Conformational changes induced in DNA by in vitro reaction with N-hydroxy-N-2-aminofluorene. Nucl Acids Res 6:1683–1694

    Google Scholar 

  • Spodheim-Maurizot M, Saint-Ruf G, Leng M (1980) Antibodies to N-hydroxy-2-aminofluorene modified DNA as probes in the study of DNA reacted with derivatives of 2-acetylaminofluorene. Carcinogenesis 1:807–812

    Google Scholar 

  • Steward MW, Petty RE (1972) The antigen-binding characteristics of antibody pores of different relative affinity. Immunology 23:881–887

    Google Scholar 

  • Stollar BD, Borel Y (1976) Nucleoside specificity in the carrier IgG-dependent induction of tolerance. J Immunol 117:1308–1313

    Google Scholar 

  • Strickland PT, Boyle JM (1980) Characterisation of monoclonal antibody to UV irradiated DNA. Proc. VIIIth Int. Congr. Photobiol. (Strasbourg), [Abstr P285]

  • Strickland PT, Boyle JM (1981) Applications of the Farr assay to the analysis of antibodies specific for UV-irradiated DNA. J Immunol Meth 41:115–124

    Google Scholar 

  • Wakizaka A, Okuhara E (1979) Immunologically active lesions induced on double-stranded DNA with ultraviolet. Photochem Photobiol 30:573–580

    Google Scholar 

  • Yoshikawa M, Kato T, Takenishi T (1967) A novel method for phosphorylation of nucleosides to 5′-nucleotides. Tetrahedron Lett 50:5065–5068

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The “Journal of Cancer Research and Clinical Oncology” publishes in loose succession “Editorials” and “Guest Editorials” on current and/or controversial problems in experimental and clinical oncology. These contributions represent exclusively the personal opinion of the author. The Editors

Supported by the Deutsche Forschungsgemeinschaft (SFB 102/A9) and by the Fritz Thyssen Stiftung (1980/2/41)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, R., Rajewsky, M.F. Antibodies specific for DNA components structurally modified by chemical carcinogens. J Cancer Res Clin Oncol 102, 99–113 (1981). https://doi.org/10.1007/BF00410662

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00410662

Navigation