Skip to main content
Log in

Anisotropic rotational diffusion of perdeuterated HIV protease from 15N NMR relaxation measurements at two magnetic fields

  • Research Paper
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Summary

15N NMR relaxation times in perdeuterated HIV-1 protease, complexed with the sub-nanomolar inhibitor DMP323, have been measured at 600 and 360 MHz 1H frequency. The relative magnitudes of the principal components of the inertia tensor, calculated from the X-ray coordinates of the protein-drug complex, are 1.0:0.85:0.44. The relation between the T1/T2 ratios observed for the individual backbone amides and their N-H orientation within the 3D structure of the protease dimer yields a rotational diffusion tensor oriented nearly collinear to the inertia tensor. The relative magnitudes of its principal components (1.00:1.11:1.42) are also in good agreement with hydrodynamic modeling results. The orientation and magnitude of the diffusion tensors derived from relaxation data obtained at 360 and 600 MHz are nearly identical. The anisotropic nature of the rotational diffusion has little influence on the order parameters derived from the 15N T1 and T2 relaxation times; however, if anisotropy is ignored, this can result in erroneous identification of either exchange broadening or internal motions on a nanosecond time scale. The average ratio of the T1 values measured at 360 and 600 MHz is 0.50±0.015, which is slightly larger than the value of 0.466 expected for an isotropic rigid rotor with τc = 10.7 ns. The average ratio of the T2 values measured at 360 and 600 MHz is 1.14±0.04, which is also slightly larger than the expected ratio of 1.11. This magnetic field dependence of the T1 and T2 relaxation times suggests that the spectral density contribution from fast internal motions is not negligible, and that the chemical shift anisotropy of peptide backbone amides, on average, is larger than the 160 ppm value commonly used in 15N relaxation studies of proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allerhand, A., Doddrell, D., Glushko, V., Cochran, D.W., Wenkert, E., Lawson, P.J. and Gurd, F.N.R. (1971) J. Am. Chem. Soc., 93, 544–546.

    Article  Google Scholar 

  • Barbato, G., Ikura, M., Kay, L.E., Pastor, R.W. and Bax, A. (1992) Biochemistry, 31, 5269–5278.

    Article  Google Scholar 

  • Bevington, P.R. and Robinson, D.K. (1992) Data Reduction and Error Analysis for the Physical Sciences, 2nd ed., McGraw-Hill, New York, NY, U.S.A., pp. 205–209.

    Google Scholar 

  • Boyd, J., Hommel, U. and Campbell, I.D. (1990) Chem. Phys. Lett., 175, 477–482.

    Article  ADS  Google Scholar 

  • Brüschweiler, R., Liao, X. and Wright, P.E. (1995) Science, 268, 886–889.

    Article  ADS  Google Scholar 

  • Clore, G.M., Driscoll, P.C., Wingfield, P.T. and Gronenborn, A.M. (1990a) Biochemistry, 29, 7387–7401.

    Article  Google Scholar 

  • Clore, G.M., Szabo, A., Bax, A., Kay, L.E., Driscoll, P.C. and Gronenborn, A.M. (1990b) J. Am. Chem. Soc., 112, 4989–4991.

    Article  Google Scholar 

  • Cole, H.B.R. and Torchia, D.A. (1991) Chem. Phys., 158, 271–281.

    Article  Google Scholar 

  • Davis, D.G., Perlman, M.E. and London, R.E. (1994) J. Magn. Reson., B104, 266–275.

    Article  Google Scholar 

  • Dellwo, M.J. and Wand, A.J. (1989) J. Am. Chem. Soc., 111, 4571–4578.

    Article  Google Scholar 

  • Garcia de la Torre, J. and Bloomfield, V.A. (1981) Q. Rev. Biophys., 14, 81–139.

    Article  Google Scholar 

  • Grzesiek, S. and Bax, A. (1993) J. Am. Chem. Soc., 115, 12593–12594.

    Article  Google Scholar 

  • Hansen, A.P., Petros, A.M., Meadows, R.P. and Fesik, S.W. (1994) Biochemistry, 33, 15418–15424.

    Article  Google Scholar 

  • Hiyama, Y., Niu, C.-H., Silverton, J.V., Bavoso, A. and Torchia, D.A. (1988) J. Am. Chem. Soc., 101, 2378–2383.

    Article  Google Scholar 

  • Kay, L.E., Torchia, D.A. and Bax, A. (1989) Biochemistry, 28, 8972–8979.

    Article  Google Scholar 

  • Kay, L.E., Nicholson, L.K., Delaglio, F., Bax, A. and Torchia, D.A. (1992) J. Magn. Reson., 97, 359–375.

    Google Scholar 

  • King, R., Maas, R., Gassner, M., Nanda, R.K., Conover, W. and Jardetzky, O. (1978) Biophys. J., 6, 103–117.

    Article  Google Scholar 

  • Kördel, J., Skelton, N.J., Akke, M., PalmerIII, A.G. and Chazin, W.J. (1992) Biochemistry, 31, 4856–4866.

    Article  Google Scholar 

  • Lam, P.Y.S., Jadhav, P.K., Eyerman, C.J., Hodge, C.N., Ru, Y., Bacheler, L.T., Meek, J.L., Otto, M.J., Rayner, M.M., Wong, Y.N., Chang, C.-H., Weber, P.C., Jackson, D.A., Sharpe, T.R. and Erickson-Viitanen, S. (1994) Science, 263, 380–384.

    Article  ADS  Google Scholar 

  • Lipari, G. and Szabo., A. (1982a) J. Am. Chem. Soc., 104, 4546–4558.

    Article  Google Scholar 

  • Lipari, G. and Szabo., A. (1982b) J. Am. Chem. Soc., 104, 4559–4570.

    Article  Google Scholar 

  • London, R.E. (1980) In Magnetic Resonance in Biology (Ed., Cohen, J.S.), Wiley, New York, NY, U.S.A., pp. 1–69.

    Google Scholar 

  • Nicholson, L.K., Yamazaki, T., Torchia, D.A., Grzesiek, S., Bax, A., Stahl, S.J., Kaufman, J.D., Wingfield, P.T., Lam, P.Y.S., Jadhav, P.K., Hodge, C.N., Domaille, P.J. and Chang, C.-H. (1995) Nature Struct. Biol., 2, 274–280.

    Article  Google Scholar 

  • Nirmala, N.R. and Wagner, G. (1988) J. Am. Chem. Soc., 110, 7557–7558.

    Article  Google Scholar 

  • Oas, T.G., Hartzell, C.J., Dahlquist, F.W. and Drobny, G.P. (1987) J. Am. Chem. Soc., 109, 5962–5966.

    Article  Google Scholar 

  • PalmerIII, A.G. (1993) Curr. Opin. Biotechnol., 4, 385–391.

    Article  MathSciNet  Google Scholar 

  • Peng, J.W., Thanabal, V. and Wagner, G. (1991) J. Magn. Reson., 95, 421–427.

    Google Scholar 

  • Peng, J.W. and Wagner, G. (1992) Biochemistry, 31, 8571–8586.

    Article  Google Scholar 

  • Peng, J.W. and Wagner, G. (1995) Biochemistry, 34, 16733–16752.

    Article  Google Scholar 

  • Phan, I., Boyd, J. and Campbell, I.D. (1996) J. Biomol. NMR, in press.

  • Schneider, D.M., Dellwo, M. and Wand, A.J. (1992) Biochemistry, 31, 3645–3652.

    Article  Google Scholar 

  • Schurr, J.M., Babcock, H.P. and Fujimoto, B.S. (1994) J. Magn. Reson., B105, 211–224.

    Article  Google Scholar 

  • Torchia, D.A., Nicholson, L.K., Cole, H.B.R. and Kay, L.E. (1993) In NMR of Proteins (Eds., Clore, G.M. and Gronenborn, A.M.), MacMillan, London, U.K., pp. 190–219.

    Google Scholar 

  • Tjandra, N., Kuboniwa, H., Ren, H. and Bax, A. (1995a) Eur. J. Biochem., 230, 1014–1024.

    Article  Google Scholar 

  • Tjandra, N., Feller, S.E., Pastor, R.W. and Bax, A. (1995b) J. Am. Chem. Soc., 117, 12562–12566.

    Article  Google Scholar 

  • Tjandra, N., Grzesiek, S. and Bax, A. (1996a) J. Am. Chem. Soc., in press.

  • Tjandra, N., Szabo, A. and Bax, A. (1996b), J. Am. Chem. Soc., in press.

  • Wagner, G. (1993) Curr. Opin. Struct. Biol., 3, 748–754.

    Article  Google Scholar 

  • Woessner, D.E. (1962) J. Chem. Phys., 3, 647–654.

    Article  ADS  Google Scholar 

  • Wüthrich, K. and Wagner, G. (1978) Trends Biochem. Sci., 3, 227–230.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tjandra, N., Wingfield, P., Stahl, S. et al. Anisotropic rotational diffusion of perdeuterated HIV protease from 15N NMR relaxation measurements at two magnetic fields. J Biomol NMR 8, 273–284 (1996). https://doi.org/10.1007/BF00410326

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00410326

Keywords

Navigation