Skip to main content
Log in

Nitrogenase activity and nitrogen assimilation in Anabaena flos-aquae growing in continuous culture

  • Published:
Archiv für Mikrobiologie Aims and scope Submit manuscript

Summary

Anabaena flos-aquae is grown in chemostats under phosphate and urea-limited conditions. Nitrogenase activity in phosphate-limited cells has a maximum activity at a dilution rate of 0.025 h-1 and is repressed 24-fold by 15 mM KNO3. Cultures growing on 1.5 mM nitrate obtain 1/2–2/3 of cell nitrogen from N2. Cells form inducible nitrite assimilating enzymes when grown on nitrate. Algae growing under A or He on limiting urea or phosphate-limited with nitrate have active nitrogenase. The ratio of nitrogenase activity to heterocyst numbers varied 90-fold depending on source of nitrogen, 15 mM KNO3 gave the smallest ratio. The regulatory mechanisms controlling the activity of nitrogenase in blue-green algae is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bone, D. H.: Relationship between phosphates and alkaline phosphatase of Anabaena flos-aquae in continuous culture. Arch. Mikrobiol. 80, 147–153 (1971a).

    PubMed  Google Scholar 

  • —: Kinetics of synthesis of nitrogenase in batch and continuous culture of Anabaena flos-aquae. Arch. Mikrobiol. 80, 242–251 (1971b).

    PubMed  Google Scholar 

  • Caperon, J.: Population growth response of Isochrysis galbana to nitrate variation at limiting concentrations. Ecology 49, 866–872 (1968).

    Google Scholar 

  • Clarke, P. H., Houldsworth, M. A., Lilly, M. D.: Catabolite repression and the induction of amidase synthesis by Pseudomonas aeruginosa 8602 in continuous culture. J. gen. Microbiol. 51, 225–233 (1968).

    Google Scholar 

  • —, Lilly, M. D.: The regulation of enzyme synthesis during growth. In: Microbial growth. (Eds. P. M. Meadow and S. J. Pirt.) Nineteenth Symposium of the society for general microbiology, pp. 113–159. London: Cambridge University Press 1969.

    Google Scholar 

  • Cobb, H. D., Myers, J.: Comparative studies of nitrogen fixation and photosynthesis in Anabaena cylindrica. Amer. J. Bot. 51, 753–762 (1964).

    Google Scholar 

  • Daesch, G., Mortenson, L. E.: Sucrose catabolism in Clostridium pasteurianum and its relation to N2 fixation. J. Bact. 96, 346–351 (1967).

    Google Scholar 

  • Dalton, H., Postgate, J. R.: Growth, and physiology of Azotobacter chroococcum in continuous culture. J. gen. Microbiol. 56, 307–319 (1969).

    Google Scholar 

  • Fay, P., Cox, R. M.: Oxygen inhibition of nitrogen fixation in cell-free preparation of blue-green algae. Biochim. biophys. Acta (Amst.) 143, 562–569 (1967).

    Google Scholar 

  • Fogg, G. E., Than-Tun: Interrelations of photosynthesis and assimilation of elementary nitrogen in a blue-green alga. Proc. roy. Soc. B 153, 111–127 (1960).

    Google Scholar 

  • Hattori, A.: Adaptive formation of nitrate reducing system in Anabaena cylindrica. Plant Cell Physiol. 3, 371–377 (1962).

    Google Scholar 

  • LaBarre, J. N.: Continuous culture of Pseudomonas putida on butanol. M.Sc. thesis, Queen's University Kingston, Canada 1970.

    Google Scholar 

  • Maddux, W. S., Jones, R. F.: Some interactions of temperature, light intensity, and nutrient concentration during continuous culture of Nitzschia closterium and Tetraselmis sp. Limnol. Oceanogr. 9, 79–86 (1964).

    Google Scholar 

  • Mickelson, J. C., Davis, E. B., Tischer, R. G.: The effect of various nitrogen sources upon heterocyst formation in Anabaena flos-aquae A-37. J. exp. Bot. 18, 397–405 (1967).

    Google Scholar 

  • Munson, T. C., Burris, R. H.: Nitrogen fixation by Rhodospirillum rubrum grown in nitrogen-limited continuous culture. J. Bact. 97, 1093–1098 (1969).

    PubMed  Google Scholar 

  • Neilson, A., Rippka, R., Kunisawa, R.: Heterocyst formation and nitrogenase synthesis in Anabaena sp. Arch. Mikrobiol. 76, 139–150 (1971).

    PubMed  Google Scholar 

  • Parejko, R. A., Wilson, P. W.: Regulation of nitrogenase synthesis by Klebsiella pneumoniae. Canad. J. Microbiol. 16, 681–685 (1970).

    Google Scholar 

  • Smith, R. V., Evans, M. C. W.: Nitrogenase activity in cell-free extracts of the bluegreen alga, Anabaena cylindrica. J. Bact. 105, 913–917 (1971).

    PubMed  Google Scholar 

  • Stewart, W. D. P., Fitzgerald, G. P., Burris, R. H.: Acetylene reduction by nitrogen fixing blue-green algae. Arch. Mikrobiol. 62, 336–348 (1968).

    PubMed  Google Scholar 

  • —, Haystead A., Pearson, H. W.: Nitrogenase activity in heterocysts of blue-green algae. Nature (Lond.) 224, 226–228 (1969).

    Google Scholar 

  • —, Lex, M.: Nitrogenase activity in the blue-green alga Plectonema boryanum strain 594. Arch. Mikrobiol. 73, 250–260 (1970).

    PubMed  Google Scholar 

  • —, Pearson, H. W.: Effects of aerobic and anaerobic conditions on growth and metabolism of blue-green algae. Proc. roy. Soc. B 175., 293–311 (1970).

    Google Scholar 

  • Vogel, A. I.: Quantitative inorganic analysis, p. 785. London: Longmans 1962.

    Google Scholar 

  • Wilcox, M.: One-dimensional pattern found in blue-green algae. Nature (Lond.) 228, 686–687 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bone, D.H. Nitrogenase activity and nitrogen assimilation in Anabaena flos-aquae growing in continuous culture. Archiv. Mikrobiol. 80, 234–241 (1971). https://doi.org/10.1007/BF00410124

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00410124

Keywords

Navigation