Skip to main content
Log in

Die Synthese von Poly-β-hydroxybuttersäure durch Hydrogenomonas H 16: Die zu β-Hydroxybutyryl-Coenzym A führenden Reaktionsschritte

  • Published:
Archiv für Mikrobiologie Aims and scope Submit manuscript

Zusammenfassung

  1. 1.

    Zur Prüfung von zellfreien Extrakten aus Hydrogenomonas auf Pyruvat-Dehydrogenase und Phosphoketolase wurde ein mit Arylamintransacetylase gekoppelter Enzymtest zusammengestellt.

  2. 2.

    Für die Pyruvat-Dehydrogenase wurden nach diesem Test höhere Enzymaktivitäten ermittelt als nach Messungen der NAD-Reduktion und der manometrischen Bestimmung der CO2-Entwicklung und des O2-Verbrauchs.

  3. 3.

    Es wurde die Kinetik der Acetyl-CoA-Bildung aus Pyruvat, Lactat und Acetat an C-autotroph und heterotroph gewachsenen Zellen verfolgt. Die Pyruvat-Dehydrogenase war in den auf Succinat gewachsenen Zellen doppelt so aktiv wie in den autotroph oder mit Acetat gezogenen Zellen. Die Acetat-thiokinase war in den Acetat-Zellen am aktivsten.

  4. 4.

    Phosphoketolase ließ sich zwar in Leuconostoc mesenteroides und Lactobacillus pentosus nachweisen, nicht aber in Hydrogenomonas, Micrococcus denitrificans, Bacillus megaterium, Azotobacter vinelandii, Aspergillus niger und Haselnüssen.

  5. 5.

    Im optischen Test wurden in Hydrogenomonas-Extrakten β-Ketothiolase und β-Hydroxybutyryl-CoA-DH nachgewiesen. Die Beteiligung von Malonyl-CoA an der Synthese kurz- und langkettiger Fettsäuren wurde diskutiert.

Summary

  1. 1.

    A photometric test employing arylamine acetyltransferase for examination of pyruvate-dehydrogenase and phosphoketolase in cell-free extracts of Hydrogenomonas was developed.

  2. 2.

    By means of this test higher enzyme activities were obtained for pyruvate-dehydrogenase than by measurements of NAD-reduction and manometric determinations of CO2-evolution and O2-uptake.

  3. 3.

    The kinetics of acetyl-CoA-formation from pyruvate, lactate, and acetate were observed with C-autotrophically as well as with heterotrophically grown cells. The pyruvate-dehydrogenase was twice as active in cells grown on succinate as in those cells grown under autotrophic conditions or with acetate. The acetyl-CoA synthetase was most active in the acetate-grown cells.

  4. 4.

    Phosphoketolase was found to be present in Leuconostoc mesenteroides and Lactobacillus pentosus but not in Hydrogenomonas, Micrococcus denitrificans, Bacillus megaterium, Azotobacter vinelandii, Aspergillus niger and hazel-nuts.

  5. 5.

    Using optical tests β-ketothiolase and β-hydroxybutyryl-CoA-DH could be demonstrated in extracts of Hydrogenomonas. The participation of malonyl-CoA in the synthesis of short- and long-chain fatty acids was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  • Altermatt, H. A., A. C. Blackwood, and A. C. Neish: The anaerobic dissimilation of D-xylose-I-C14, D-xylose-2-C14 and D-xylose-5-C14 of Leuconostoc mesenteroides. Canad. J. Biochem. 32, 622–626 (1955).

    Google Scholar 

  • Alvarez, A., E. Vanderwinkel et J. U. Wiame: L'oxydation de l'acide pyruvique chez la levure. Biochim. biophys. Acta (Amst.) 28, 333–340 (1958).

    Article  Google Scholar 

  • Bergmann, F. H., J. C. Towne, and R. H. Burris: Assimilation of carbon dioxyde by hydrogen bacteria. J. biol. Chem. 230, 13–23 (1958).

    PubMed  Google Scholar 

  • Bergmeyer, H. U.: Methoden der enzymatischen Analyse. Weinheim/Bergstr.: Verlag Chemie 1962.

    Google Scholar 

  • Bressler, R., and S. J. Wakil: Studies on the mechanism of fatty acid synthesis. IX. The conversion of malonyl-CoA to long chain fatty acids. J. biol. Chem. 236, 1643–1651 (1961).

    Google Scholar 

  • Bücher, T.: Über ein phosphatübertragendes Gärungsferment. Biochim. biophys. Acta (Amst.) 1, 292–314 (1947).

    Article  Google Scholar 

  • De Busk, G. B., and L. J. Reed: Coenzymatic functions of thiamine pyrophosphate and lipothiamine pyrophosphate. Fed. Proc. 12, 193–194 (1952).

    Google Scholar 

  • Busse, M., P. K. Kindel, and M. Gibbs: The heterolactic fermentation. III. Position of C14 in the products of fructose dissimilation by Leuconostoc mesenteroides. J. biol. Chem. 236, 2850–2853 (1961).

    PubMed  Google Scholar 

  • Chou, T. C., and F. Lipmann: Separation of acetyl transfer enzymes in pigeon liver extract. J. biol. Chem. 196, 89–103 (1952).

    PubMed  Google Scholar 

  • Chowdhury, A. A.: Poly-β-hydroxybuttersäure abbauende Bakterien und Exoenzym. Dissertation. Göttingen 1963. Arch. Mikrobiol. 47, 167–200 (1963).

    Google Scholar 

  • Ciferri, O., and E. R. Blakley: The metabolism of 2-keto-D-gluconate by cell-free extracts of Leuconostoc mesenteroides. Canad. J. Microbiol. 5, 547–560 (1959).

    Google Scholar 

  • Chein, C. H., and I. C. Gunsalus: A lipoic acid-mediated synthesis of acetoin from acetylphosphate (AcPO4) by E. coli. Fed. Proc. 13, 191–192 (1954).

    Google Scholar 

  • Colowick, S. P., and N. O. Kaplan: Methods in enzymology, Vol. 1. New York: Academic Press Inc. Publ. 1955.

    Google Scholar 

  • Decker, K.: Die aktivierte Essigsäure, Stuttgart: F. Enke 1959.

    Google Scholar 

  • Dobrogosz, W. J., and R. D. Demoss: Studies on the regulation of ribosephosphateisomerase activity in Pediococcus pentosaceus. Biochim. biophys. Acta (Amst.) 77, 629–638 (1963).

    Article  Google Scholar 

  • ——: Pentose utilization by Pediococcus pentosaceus. J. Bact. 85, 1356–1364 (1963).

    PubMed  Google Scholar 

  • Gibson, D. M., E. B. Titchener, and S. J. Wakil: Requirement for bicarbonate in fatty acid synthesis. J. Amer. chem. Soc. 80, 2908 (1958).

    Google Scholar 

  • Goldman, D. S.: Enzyme systems in the Mycobacteria. V. The pyruvic dehydrogenase system. Biochim. biophys. Acta (Amst.) 27, 513–518 (1958).

    Article  Google Scholar 

  • —: Enzyme systems in the Mycobacteria. VI. Further studies on the pyruvic dehydrogenase system. Biochim. biophys. Acta (Amst.) 32, 80–95 (1959).

    Article  Google Scholar 

  • —: Enzyme systems in the Mycobacteria. IX. The reductive acetylation of lipoic acid. Biochim. biophys. Acta (Amst.) 45, 279–289 (1960).

    Article  Google Scholar 

  • Goldman, P., A. W. Alberts, and P. R. Vagelos: The condensation reaction of fatty acid biosynthesis. II. Requirement of the enzymes of the condensation reaction for fatty acid synthesis. J. biol. Chem. 238, 1255–1261 (1963).

    PubMed  Google Scholar 

  • Gottschalk, G.: Die Biosynthese der Poly-β-hydroxybuttersäure durch Knallgasbakterien. II. Verwertung organischer Säuren. Arch. Mikrobiol. 47, 230–235 (1964a).

    PubMed  Google Scholar 

  • —: Die Biosynthese der Poly-β-hydroxybuttersäure durch Knallgasbakterien. III. Synthese aus Kohlendioxyd. Arch. Mikrobiol. 47, 236–250 (1964b).

    PubMed  Google Scholar 

  • Gunsalus, I. C., L. Struglia, and D. I. O'Kane: Pyruvic acid metabolism. IV. Occurrence, properties and partial purification of pyruvate oxidation factor. J. biol. Chem. 194, 859–869 (1952).

    PubMed  Google Scholar 

  • —: Grouptransfer and acyl-generating functions of lipoic derivates. Mechanism of enzyme action: McElroy, W. D., and B. Glass. Baltimore: Hopkins 1954.

    Google Scholar 

  • Heath, E. C., J. Hurwitz, and B. L. Horecker: Acetyl phosphate formation in the phosphorolytic cleavage of pentose phosphate. J. Amer. chem. Soc. 78, 5449 (1956).

    PubMed  Google Scholar 

  • Hirsch, P., G. Georgiev u. H. G. Schlegel: CO2-Fixierung durch Knallgasbakterien. III. Autotrophe und organotrophe CO2-Fixierung. Arch. Mikrobiol. 46, 79–95 (1963).

    PubMed  Google Scholar 

  • Holzer, H.: Wirkungsmechanismus von Thiaminpyrophosphat. Angew. Chem. 73, 721–727 (1961).

    Google Scholar 

  • —, H. W. Goedde u. S. Schneider: Umsatz von Oxybrenztraubensäure und Glykolaldehyd mit Carboxylase und Alkoholdehydrogenase aus Hefe. Biochem. Z. 327, 245–254 (1955).

    PubMed  Google Scholar 

  • —, u. W. Schröter: Zum Wirkungsmechanismus der Phosphoketolase. I. Oxydation verschiedener Substrate mit Ferricyanid zu Glykolsäure. Biochim. biophys. Acta (Amst.) 65, 271–288 (1962).

    Article  Google Scholar 

  • Hübener, H. J.: Über die Extraktion von Mikroorganismen durch Ultraschall mit einer neuen Apparatur. Biochem. Z. 331, 410–421 (1959).

    Google Scholar 

  • Hughes, D. E.: A press for disrupting bacteria and other microorganisms. Brit. J. exp. Path. 32, 97–109 (1951).

    PubMed  Google Scholar 

  • Hurwitz, J.: Pentose phosphate cleavage by Leuconostoc mesenteroides. Biochim. biophys. Acta (Amst.) 28, 595–602 (1958).

    Article  Google Scholar 

  • —, u. B. L. Horecker: The purification of phosphoketopentoepimerase from Lactobacillus pentosus and the preparation of xylulose-5-phosphate. J. biol. Chem. 223, 993–1008 (1956).

    PubMed  Google Scholar 

  • —, A. Weissbach, B. L. Horecker, and P. Z. Smyrnotis: Spinach phosphoribokinase. J. biol. Chem. 218, 769–783 (1956).

    PubMed  Google Scholar 

  • Kaltwasser, H., G. Vogt, u. H. G. Schlegel: Polyphosphatsynthese während der Nitrat-Atmung von Micrococcus denitrificans Stamm 11. Arch. Mikrobiol. 44, 259–265 (1962).

    Google Scholar 

  • Kaplan, N. O., and F. Lipmann: The assay and distribution of coenzyme A. J. biol. Chem. 174, 37–44 (1948).

    Google Scholar 

  • Koike, M., L. J. Reed, and W. R. Carrol: α-Ketoacid dehydrogenation complexes. IV. Resolution and reconstitution of the Escherichia coli pyruvate dehydrogenation complex. J. biol. Chem. 238, 30–39 (1963).

    PubMed  Google Scholar 

  • Krampitz, L. O., G. Greull, Ch. S. Miller, J. B. Bicking, H. R. Skeggs, and J. M. Sprague: An active acetaldehyde-thiamine intermediate. J. Amer. chem. Soc. 80, 5893–5894 (1958).

    Google Scholar 

  • —, G. Greull, and I. Suzuki: An active acetaldehyde-thiamine intermediate. Fed. Proc. 18, 266 (1959).

    Google Scholar 

  • Ljungren, G.: Darstellung von Acetessigsäurelösung. Biochem. Z. 145, 422–425 (1924).

    Google Scholar 

  • Lynen, F.: Functional group of coenzyme A and its metabolic relations, especially in the fatty acid cycle. Fed. Proc. 12, 683–691 (1953).

    PubMed  Google Scholar 

  • Lynen, F.: Die Multienzym-Struktur der Fettsäuresynthese. Vortr. Ges. f. physiol. Chem., Wien 1962.

  • Macrae, R. M., and J. F. Wilkinson: Poly-β-hydroxybutyrate metabolism in washed suspensions of Bacillus cereus and Bacillus megaterium. J. gen. Microbiol. 19, 210–222 (1958).

    PubMed  Google Scholar 

  • Massey, V.: The identity of diaphorase and lipoic dehydrogenase. Biochim. biophys. Acta (Amst.) 30, 205–206 (1958).

    Article  Google Scholar 

  • —, and C. Veeger: Studies on the reaction mechanism of lipoyl dehydrogenase. Biochim. biophys. Acta (Amst.) 48, 33–47 (1961).

    Article  Google Scholar 

  • Matthews, J., and L. J. Reed: Purification and properties of a dihydrolipoic dehydrogenase from Spinacea oleracea. J. biol. Chem. 238, 1869–1876 (1963).

    PubMed  Google Scholar 

  • McIlwain, H.: Preparation of cell-free bacterial extracts with powdered alumina. J. gen. Microbiol. 2, 288–291 (1948).

    Google Scholar 

  • Merrick, J. H., and M. Doudoroff: Enzymatic synthesis of poly-β-hydroxybutyric acid in bacteria. Nature (Lond.) 189, 890–892 (1961).

    Google Scholar 

  • Ochoa, S.: Enzymatic mechanism in the citric acid cycle. Advanc. Enzymol. 15, 183–270 (1954).

    Google Scholar 

  • Ramakrishnan, C. V., and S. M. Martin: The enzymatic synthesis of citric acid by cell-free extracts of Aspergillus niger. Canad. J. Biochem. 32, 434–439 (1954).

    Google Scholar 

  • Reed, L. J.: Metabolism and function of lipoic acid. Inter. Symp. Enzyme Chem. Tokyo and Kyoto (1957), 71–77 (1958).

  • —, and B. G. de Busk: Mechanism of enzymatic oxidative decarboxylation of pyruvate. J. Amer. chem. Soc. 75, 1261–1262 (1953).

    Google Scholar 

  • —, and M. Koike: Identification of Escherichia coli fraction B (dihydrolipoic dehydrogenase) as a flavoprotein. Fed. Proc. 18, 308 (1959).

    Google Scholar 

  • —: Resolution of pyruvate and α-ketoglutarate dehydrogenation complex. Fed. Proc. 20, 238 (1961).

    Google Scholar 

  • la Rivière, J. W. M.: On the microbial metabolism of the tartaric acid isomeres. Dissertation. Delft 1958.

  • Schindler, J., u. H. G. Schlegel: D(-)-β-Hydroxybuttersäure-Dehydrogenase aus Hydrogenomonas H 16. Biochem. Z. 339, 154–161 (1963).

    PubMed  Google Scholar 

  • Schlegel, H. G., H. Kaltwasser u. G. Gottschalk: Ein Submersverfahren zur Kultur wasserstoffoxydierender Bakterien: Wachstumsphysiologische Untersuchungen. Arch. Mikrobiol. 38, 209–222 (1961).

    PubMed  Google Scholar 

  • —, u. G., Gottschalk: Poly-β-hydroxybuttersäure ihre Verbreitung, Funktion und Biosynthese. Angew. Chem. 74, 342–347 (1962).

    Google Scholar 

  • Schramm, M., V. Klybas, and E. Racker: Phosphorolytic cleavage of fructose-6-phosphate phosphoketolase from Acetobacter xylinum. J. biol. Chem. 233, 1283–1288 (1958).

    PubMed  Google Scholar 

  • Schröter, W., u. H. Holzer: Zum Wirkungsmechanismus der Phosphoketolase. II. Umsatz von Thiaminpyrophosphat aktiviertem Glycolaldehyd. Biochim. biophys. Acta (Amst.) 77, 474–481 (1963).

    Article  Google Scholar 

  • Searis, R. L., and D. R. Sanadi: Dihydrothioctyl dehydrogenase—a flavoprotein. Proc. nat. Acad. Sci. (Wash.) 45, 697–701 (1959).

    Google Scholar 

  • Simon, E. J., and D. Shemin: The preparation of S-succinyl coenzyme A. J. Amer. chem. Soc. 75, 2520 (1953).

    Google Scholar 

  • Stansly, P. G., and H. Beinert: Synthesis of butyryl-coenzyme A by reversal of the oxidative pathway. Biochim. biophys. Acta (Amst.) 11, 600–601 (1953).

    Article  Google Scholar 

  • Strecker, H. J., and S. Ochoa: Pyruvate oxidation system and acetoin formation. J. biol. Chem. 209, 313–326 (1954).

    PubMed  Google Scholar 

  • Stumpf, P. K., and B. L. Horecker: The role of xylulose-5-P in xylose metabolism of Lactobacillus pentosus. J. biol. Chem. 218, 753–768 (1956).

    PubMed  Google Scholar 

  • Wakil, S. J., R. Bressler: Studies on the mechanism of fatty acid synthesis. X. Reduced triphosphopyridine nucleotide-acetoacetyl coenzyme A reductase. J. biol. Chem. 237, 687–693 (1962).

    PubMed  Google Scholar 

  • Wren, A., and V. Massey: Lipoyl dehydrogenase from Saccharomyces cerevisiae. Biochem. J. 89, p 47 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Auszug aus der gleichlautenden Dissertation der mathematisch-naturwissenschaftlichen Fakultät der Universität Göttingen 1964.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schindler, J. Die Synthese von Poly-β-hydroxybuttersäure durch Hydrogenomonas H 16: Die zu β-Hydroxybutyryl-Coenzym A führenden Reaktionsschritte. Archiv. Mikrobiol. 49, 236–255 (1964). https://doi.org/10.1007/BF00409747

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00409747

Navigation