Advertisement

Marine Biology

, Volume 68, Issue 3, pp 253–264 | Cite as

Depth-dependent photoadaption by zooxanthellae of the reef coral Montastrea annularis

  • P. Dustan
Article

Abstract

Zooxanthellae living in colonies of the Caribbean reef coral Montastrea annularis photoadapt to depth-dependent attenuation of submarine light. Studies carried out at Discovery Bay, Jamaica, show that in shallow-living coral colonies, the zooxanthellae appear photoadapted to function at high light intensities, and do poorly if transplanted to low light intensities; in contrast, zooxanthellae in deeper-living coral colonies can be damaged by high light intensities. The adaptation to decreasing light intensity and changing spectral quality appears to be accomplished by increasing the size of the photosynthetic unit (PSU), as opposed to increasing the number of PSU's per cell. Whole cell absorption increases with depth, partially offsetting the loss of light energy due to depth-dependent attenuation. Calculations of photosynthetically usable radiation, the light an alga is capable of absorbing in its own submarine habitat, suggest that the algae at different depths are optimizing rather than maximizing their ability to harvest submarine light energy.

Keywords

Radiation Attenuation Light Intensity Reef Coral Cell Absorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Aller, R. C. and R. E. Dodge: Animal-sediment relations in a tropical lagoon. Discovery Bay, Jamaica. J. mar. Res. 32, 209–232 (1974)Google Scholar
  2. Barnes, D. J. and D. L. Taylor: In situ studies of calcification and photosynthetic carbon fixation in the coral Montastrea annularis. Helgoländer wiss. Meeresunters. 24, 284–291 (1973)Google Scholar
  3. Booth, C. R. and P. Dustan: Diver-operable multiwavelegth radiometer. Proc. Soc. photo-opt. Instrumn Engrs 196, 33–39 (1979)Google Scholar
  4. Butler, W. L.: Absorption spectroscopy of biological materials. Meth. Enzymol. 24, 3–25 (1972)Google Scholar
  5. Clayton, R. K.: Light and living matter. Vol. 2. The biological part, 231 pp. New York: McGraw-Hill 1971Google Scholar
  6. Dustan, P.: Growth and form in the reef-building coral Montastrea annularis. Mar. Biol. 33, 101–107 (1975a)Google Scholar
  7. Dustan, P.: Genecological differentiation in the reef-building coral Montastrea annularis, 300 pp. New York: State University of New York at Stony Brook 1975bGoogle Scholar
  8. Dustan, P.: Distribution of zooxanthellae and photosynthetic chloroplast pigments of the reef-building coral Montastrea annularis Ellis and Solander in relation to depth on a West Indian coral reef. Bull. mar. Sci. 29, 79–95 (1979)Google Scholar
  9. Falkowski, P. G., T. G. Owens, A. C. Ley and D. Mauzerall: Effects of growth irradiance levels on the ratio of reaction centers in two species of marine phytoplankton. Pl. Physiol., Baltimore, Md 68, 969–973 (1981)Google Scholar
  10. Goreau, T. F. and N. I. Goreau: The physiology of skeleton formation in corals. I. A method for measuring the rate of calcium deposition by corals under different conditions. Biol. Bull mar. biol. Lab., Woods Hole 116, 59–75 (1959)Google Scholar
  11. Haxo, F. T., J. H. Kycia, G. F. Somers, A. Bennet and H. W. Siegelman: Peridinin-chlorophyll a proteins of the dinoflagellate Amphidinium carterae (Plymouth 450). Pl. Physiol. Lancaster 57, 297–303 (1976)Google Scholar
  12. Jeffrey, S. W. and F. T. Haxo: Photosynthetic pigments of symbiotic dinoflagellates (zooanthellae) from corals and clams. Biol. Bull. mar. biol. Lab., Woods Hole 135, 149–165 (1968)Google Scholar
  13. Jeffrey, S. W. and G. F. Humphrey: New spectrophotometric equation for determining chlorophylls a, b, c 1 and C 2 in higher plants, algae, and natural phytoplankton. Biochem. Physiol. Pfl. 167, 191–194 (1975)Google Scholar
  14. Jeffrey, S. W., M. Sielicki and F. T. Haxo: Chloroplast pigment patterns in dinoflagellates. J. Phycol. 11, 374–384 (1975)Google Scholar
  15. Kirk, J. T. O.: A theoretical analysis of the contribution of algal cells to the attenuation of light within natural waters. New Phytol. 75, 11–20 (1975)Google Scholar
  16. Lang, J. C.: Interspecific aggression by scleractinian corals. II: why the race is not only to the swift. Bull. mar. Sci. 23, 260–279 (1973)Google Scholar
  17. Ley, A.: The distribution of absorbed light energy for algal photosynthesis. In. New York: Plenum Press 1980Google Scholar
  18. Melis, A. and G. W. Harvey: Regulation of photosystems stoichiometry, chloroplast ultrastructure. Biochim. biophys. Acta 637, 138–145 (1981)Google Scholar
  19. Morel, A.: Available, useable, and stored radiant energy in relation to marine photosynthesis. Deep-Sea Res. 25, 673–688 (1978)Google Scholar
  20. Porter, J. W., G. J. Smith, J. F. Battey, D. G. Dallmeyer, S. Chang and W. Fitt: Photobiology of reef corals: photoadaptive mechanisms and their ecological consequences. Abstr. Am. Soc. Limnol. Oceanogr. 3rd winter Mtg Dec. 27–30 (1980)Google Scholar
  21. Prézelin, B. B.: The role of peridin-chlorophyll a-proteins in the photosynthetic light adaptation of the marine dinoflagellate Glenodinium sp. Planta 130, 225–233 (1976)Google Scholar
  22. Prézelin, B. B. and R. S. Alberte: Photosynthetic characteristics and organization of chlorophyll in marine dinoflagellates. Proc. natn. Acad. Sci. U.S.A. 75, 1801–1804 (1978)Google Scholar
  23. Prézelin, B. B., A. C. Ley and F. T. Haxo: Effects of growth irradiance on the photosynthetic action spectra of the marine dinoflagellate. Glenodinium sp. Planta 130, 251–256 (1976)Google Scholar
  24. Prézelin, B. B., B. W. Mason and B. M. Sweeney: Characterization of photosynthetic rhythms in marine dinoflagellates. I. Pigmentation, photosynthetic capacity and respiration. Pl. Physiol. Lancaster 60, 384–387 (1977)Google Scholar
  25. Prézelin, B. B. and H. A. Matlick: Time-course of photoadaptation in the photosynthesis-irradiance relationship of a dinoflagellate exhibiting photosynthetic periodicity. Mar. Biol. 58, 85–96 (1980)Google Scholar
  26. Prézelin, B. B. and B. M. Sweeney: Photoadaptation of photosynthesis in bloom-forming dinoflagellates, In: Toxic dinoflagellate blooms, pp 101–106. Ed. by Taylor and Seliger. North Holland, Elsevier Inc. 1979Google Scholar
  27. Scott, B. D. and H. R. Jitts: Photosynthesis of phytoplankton and zooxanthellae on a coral ree. Mar. Biol. 41, 307–315 (1977)Google Scholar
  28. Thornber, J. P., R. S. Alberte, F. A. Hunter, J. A. Shiozawa and K. S. Kan: The organization of chlorophyll in the plant photosynthetic unit. Brookhaven Symp. Biol. 28, 132–148 (1976)Google Scholar
  29. Tyler, J. E.: In situ quantum efficiency of oceanic photosynthesis. Appl. Optics (Easton, Pa.) 18, 442–445 (1979)Google Scholar
  30. Tyler, J. E. and R. C. Smith: Measurements of spectral irradiance underwater, 103 pp. New York: Gordon & Breach 1970Google Scholar
  31. Weiss, R. F.: The solubility of nitrogen and oxygen in water and seawater. Deep-Sea Res. 17, p. 729 (1970)Google Scholar
  32. Wells, J. W.: Corals. Mem geol. Soc. Am. 67, 1087–1104 (1957)Google Scholar
  33. Yentsch, C. S.: A non-extractive method for the quantitative estimation of chlorophyll in algal cultures. Nature, Lond. 179, 1302–1304 (1957)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • P. Dustan
    • 1
  1. 1.Visibility LaboratoryScripps Institution of OceanographyLa JollaUSA

Personalised recommendations