Archiv für Mikrobiologie

, Volume 91, Issue 1, pp 87–90 | Cite as

Co-metabolism as a factor in microbial degradation of cycloparaffinic hydrocarbons

  • H. W. Beam
  • J. J. Perry
Short Communications


All attempts to isolate microoganisms from soil that utilize unsubstituted cycloparaffinic hydrocarbons, e.g. cyclohexane, as sole source of carbon and energy have been unsuccessful. However, cyclohexane was degraded in fertile soil as measured by release of 14C-carbon dioxide on addition of UL-14C-cyclohexane. Hydrocarbon utilizing organisms isolated from the soil grew rapidly on cycloalkanones. Several cultures, after growth on propane, could oxidize cycloparaffins to the homologous cycloalkanone. These results suggest that degradation of cycloalkanes in nature may be via co-metabolism.


Dioxide Hydrocarbon Propane Microbial Degradation Cyclohexane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boggiolini, M., Bickel, M. H.: A new type of incubation apparatus for the determination of metabolically produced 14CO2. Analyt. Biochem. 14, 290–295 (1966).Google Scholar
  2. Dunlap, K. R., Perry, J. J.: Effect of substrate on the fatty acid composition of hydrocarbon-utilizing microorganisms. J. Bact. 94, 1919–1923 (1967).Google Scholar
  3. Dunlap, K. R., Perry, J. J.: Effect of substrate on fatty acid composition of hydrocarbon-and ketone-utilizing microorganisms. J. Bact. 96, 318–321 (1968).Google Scholar
  4. Fuhs, G. W.: Der mikrobielle Abbau von Kohlenwasserstoffen. Arch. Mikrobiol. 39, 374–422 (1961).Google Scholar
  5. Fuson, R. C.: Alicyclic compounds and the theory of strain. In: H. Gilman, Ed., Organic chemistry, vol. I, pp. 66–73. New York: Wiley 1943.Google Scholar
  6. Hoff, J. E., Feit, E. D.: Functional group analysis in gas chromatography. Analyt. Chem. 35, 1298–1299 (1963).Google Scholar
  7. Horvath, R. S.: Microbial co-metabolism and degradation of organic compounds in nature. Bact. Rev. 36, 146–155 (1972).Google Scholar
  8. Imelik, B.: Oxydation de cyclohexane par Pseudomas aeruginosa. C. R. Soc. Biol. (Paris) 226, 2082–2083 (1948).Google Scholar
  9. Ooyama, J., Foster, J. W.: Bacterial oxidation of cycloparaffinic hydrocarbons. Antonie v. Leeuwenhoek 31, 45–65 (1965).Google Scholar
  10. Pelz, B. F., Rehm, H. J.: Isolierung, Substratassimilation und einige Produkte alkanabbauender Schimmelpilze. Arch. Mikrobiol. 84, 20–28 (1972).Google Scholar
  11. Perry, J. J.: Substrate specificity in hydrocarbon utilizing microorganisms. Antonie v. Leeuwenhoek 34, 27–36 (1968).Google Scholar
  12. Perry, J. J., Scheld, H. W.: Oxidation of hydrocarbons by microorganisms isolated from soil. Canad. J. Microbiol. 14, 403–407 (1968).Google Scholar
  13. Shaw, R.: Microbiological oxidation of cyclic ketones. Nature (Lond). 209, 1369 (1966).Google Scholar
  14. Vestal, J. R., Perry, J. J.: Effect of substrate on the lipids of the hydrocarbon-utilizing Mycobacterium vaccae. Canad. J. Microbiol. 17, 445–449 (1971).Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • H. W. Beam
    • 1
  • J. J. Perry
    • 1
  1. 1.Department of MicrobiologyNorth Carolina State UniversityRaleigh

Personalised recommendations