Skip to main content
Log in

Die Biosynthese der Poly-β-hydroxybuttersäure durch Knallgasbakterien

III. Synthese aus Kohlendioxyd

  • Published:
Archiv für Mikrobiologie Aims and scope Submit manuscript

Zysammenfassung

Bereits nach 8 sec 14CO2-Fixierung ist die aus Hydrogenomonas H 16 isolierte Poly-β-hydroxybuttersäure (PHBS) gleichmäßig radioaktiv markiert.

Es werden Beweise dafür erbracht, daß die PHBS aus Kohlendioxyd über 3-Phosphoglycerinsäure, Brenztraubensäure, Acetyl-CoA und Acetacetyl-CoA synthetisiert wird.

Während der PHBS-Synthese geht so eines von drei fixierten CO2-Molekülen durch oxydative Decarboxylierung der Brenztraubensäure wieder verloren. Damit steht im Einklang, daß die CO2-Fixierungsleistung wachsender Zellen größer ist als die PHBS-speichernder.

Nur ein Zehntel der Ribulose-1,5-diphosphat-Carboxylase, die für die gemessene autotrophe CO2-Fixierungskapazität erforderlich wäre, konnte im Rohextrakt von Hydrogenomonas H 16 nachgewiesen werden. Das Enzym ließ sich 20 fach anreichern.

Summary

Poly-β-hydroxybutyric acid (PHBA) isolated from Hydrogenomonas H 16 following an 8 sec 14CO2-incorporation is already uniformly labelled.

It was shown, that the synthesis of PHBA from carbon dioxide takes place via 3-phosphoglyceric acid, pyruvic acid, acetyl-CoA and acetoacetyl-CoA.

During the synthesis of PHBA, one of three CO2-molecules previously fixed is lost in an oxydative decarboxylation of pyruvic acid. It is therefore evident that the CO2-fixation of growing cells will be larger than that of cells storing PHBA.

Only one tenth of the ribulose-1,5-diphosphate carboxylase, which would be necessary for the measured CO2-fixation, could be determined in the crude extract of Hydrogenomonas H 16. The carboxylase was purified about 20-fold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  • Aubert, J.-P., G. Milhaud et J. Millet: L'assimilation de l'anhydride carboniquepar les bactéries chimioautotrophes. Ann. Inst. Pateur 92, 515 (1957).

    Google Scholar 

  • Bassham, J. A., and M. Calvin: The pathway of carbon in photosynthesis. Prentice-Hall, Inc. 1957.

  • Beisenherz, G., H. J. Boltze, Th. Bücher, R. Czok, K. H. Garbade, E. Meyer-Arndt u. G. Peleiderer: Diphosphofructose-Aldolase, Phosphoglyceraldehyd-Dehydrogenase, Milchsäuredehydrogenase, Glycerophosphat-Dehydrogenase und Pyruvat-Kinase aus Kaninchenmuskulatur in einem Arbeitsgang. Z. Naturforsch. 8b, 555 (1953).

    Google Scholar 

  • Bergmann, F. H., J. C. Towne and R. H. Burris: Assimilation of carbon dioxide by hydrogen bacteria. J. biol. Chem. 230, 13 (1958).

    Google Scholar 

  • Bücher, Th.: Über ein phosphatübertragendes Gärungsferment. Biochim. biophys. Acta (Amst.) 1, 292 (1947).

    Google Scholar 

  • Bueding, E., and H. W. Yale: Production of α-methylbutyric acid by bacteriafree Ascaris lumbricoides. J. biol. Chem. 193, 411 (1951).

    Google Scholar 

  • Fuller, R. C., and M. Gibbs: Intracellular and phylogenetic distribution of ribulose-1,5-diphosphate carboxylase and D-glyceraldehyd-3-phosphate dehydrogenases. Plant. Physiol. 34, 324 (1959).

    Google Scholar 

  • — and H. L. Kornberg: Carbon metabolism in Chromatium. J. biol. Chem. 236, 2140 (1961).

    Google Scholar 

  • Gibbs, M., and O. Kandler: Asymmetric distribution of 14C in sugars formed during photosynthesis. Proc. nat. Acad. Sci. (Wash.) 43, 446 (1957).

    Google Scholar 

  • Gottschalk, G.: Die Biosynthese der Poly-β-hydroxybuttersäure durch Knallgasbakterien. I. Ermittlung der 14C-Verteilung in Poly-β-hydroxybuttersäure. Arch. Mikrobiol. 47, 225 (1964a).

    Google Scholar 

  • — II. Verwertung organischer Säuren. Arch. Mikrobiol. 47, 230 (1964b).

    Google Scholar 

  • Hirsch, P., G. Georgiev and H. G. Schlegel: Identification of early labelled products of CO2-fixation by hydrogen bacteria accumulating poly-β-hydroxybutyric acid. Nature (Lond.) 197, 313 (1963).

    Google Scholar 

  • —, u. H. G. Schlegel: CO2-Fixierung durch Knallgasbakterien. I. Einbau und Fraktionierung. Arch. Mikrobiol. 46, 44 (1963).

    Google Scholar 

  • Hohorst, H. J., F. Kreutz u. Th. Bücher: Über Metabolitgehalte und Metabolit-Konzentrationen in der Leber der Ratte. Biochem. Z. 332, 18 (1959).

    Google Scholar 

  • Horecker, B. L., J. Hurwitz and A. Weissbach: The enzymatic synthesis and properties of ribulose-1,5-diphosphate. J. biol. Chem. 218, 785 (1956).

    Google Scholar 

  • Hübener, H. J.: Über die Extraktion von Mikroorganismen durch Ultraschall mit einer neuen Apparatur. Biochem. Z. 331, 410 (1959).

    Google Scholar 

  • Hughes, D. E.: A press for disrupting bacteria and other micro-organisms. Brit. J. exp. Path. 32, 97 (1951).

    Google Scholar 

  • Hurwitz, J.: Pentose phosphate cleavage by Leuconostoc mesenteroides. Biochim. biophys. Acta (Amst.) 28, 599 (1958).

    Google Scholar 

  • — and P. Z. Smyrniotis: Spinach phosphoribulokinase. J. biol. Chem. 218, 769 (1956).

    Google Scholar 

  • Jakoby, W. B., D. O. Brummond and S. Ochoa: Formation of 3-phosphoglyceric acid by carbon dioxide fixation with spinach leaf enzymes. J. biol. Chem. 218, 811 (1956).

    Google Scholar 

  • Judis, J., H. Koffler and D. M. Powelson: The incorporation of 14CO2 into organic compounds by cell-free extracts of a Hydrogenomonas sp. Bact. Proc. 117, P 69 (1954).

    Google Scholar 

  • Kornberg, H. L., J. F. Collins and D. Bigley: The influence of growth substrates on metabolic pathways in Micrococcus denitrificans. Biochim. biophys. Acta (Amst.) 39, 9 (1960).

    Google Scholar 

  • Lascelles, J.: The formation of ribulose-1,5-diphosphate carboxylase by growing cultures of Athiorhodaceae. J. gen. Microbiol. 23, 499 (1960).

    Google Scholar 

  • Losada, M., A. V. Trebst and D. J. Arnon: Photosynthesis by isolated chloroplasts. XI. CO2-assimilation in a reconstituted chloroplast system. J. biol. Chem. 235, 832 (1960).

    Google Scholar 

  • Mayaudon, J., A. A. Benson and M. Calvin: Ribulose-1,5-diphosphate from and CO2-fixation by Tetragonia expansa leaves extract. Biochim. biophys. Acta (Amst.) 23, 342 (1957).

    Google Scholar 

  • Orgel, G., N. E. Dewar and H. Koffler: Appearance of radioactivity from 14CO2 in formic and acetic acids during the autotrophic growth of Hydrogenomonas facilis. Biochim. biophys. Acta (Amst.) 21, 409 (1956).

    Google Scholar 

  • Peterkofsky, A., and E. Racker: The reductive pentose phosphate cycle. III. Enzyme activities in cell-free extracts of photosynthetic organisms. Plant. Physiol. 36, 409 (1961).

    Google Scholar 

  • Quayle, J. R., R. C. Fuller, A. A. Benson and M. Calvin: Enzymatic carboxylation of ribulose diphosphate. J. Amer. chem. Soc. 76, 3610 (1954).

    Google Scholar 

  • —, and D. B. Keech: Carbon assimilation by Pseudomonas oxalaticus (OXI). 2. Formate and carbon dioxide utilization by cell-free extracts of the organism grown on formate. Biochem. J. 72, 631 (1959).

    Google Scholar 

  • Racker, E.: The reductive pentose phosphate cycle. I. Phosphoribulokinase and ribulosediphosphate carboxylase. Arch. Biochem. 69, 300 (1957).

    Google Scholar 

  • — In S. P. Colowick and N. O. Kaplan: Methods in enzymology, Vol. V, p. 266. New York: Academic Press 1962.

    Google Scholar 

  • Richter, G.: Comparison of enzymes of sugar metabolism in two photosynthetic algae: Anacystis nidulans and Chlorella pyrenoidosa. Naturwissenschaften 46, 604 (1959).

    Google Scholar 

  • Sakami, W.: Handbook of isotope tracer methods. Cleveland, Ohio: Western Researve University 1955.

    Google Scholar 

  • Schindler, J.: Persönliche Mitteilung.

  • Schramm, M., V. Klybas, and E. Racker: Phosphorolytic cleavage of fructose-6-phosphate by fructose-6-phosphate phosphoketolase from Acetobacter xylinum. J. biol. Chem. 233, 1283 (1958).

    Google Scholar 

  • Stiller, M.: The path of carbon in photosynthesis. Ann. Rev. Plant Physiol. 13, 151 (1962).

    Google Scholar 

  • Trudinger, P. A.: Fixation of carbon dioxide by extracts of the strict autotroph Thiobacillus denitrificans. Biochem. J. 64, 274 (1956).

    Google Scholar 

  • Vernon, L.: Bacterial photosynthesis. Photobiology, Proc. 19. annual Biol. Coll. 1958.

  • Warburg, O., u. W. Christian: Isolierung und Kristallisation des Gärungsfermentes Enolase. Biochem. Z. 310, 384 (1942).

    Google Scholar 

  • — u. G. Krippahl: Über das Verhalten einiger Aminosäuren in Chlorella bei Zusatz von markierter Kohlensäure. Z. Naturforsch. 12b, 481 (1957).

    Google Scholar 

  • Weissbach, A., P. F. Smyrniotis, and B. L. Horecker: Pentosephosphate and CO2 fixation in spinach extracts. J. Amer. chem. Soc. 76, 3611 (1954).

    Google Scholar 

  • — and J. Hurwitz: The enzymatic formation of phosphoglyceric acid from ribulose-diphosphate and carbon dioxide. J. biol. Chem. 218, 795 (1956).

    Google Scholar 

  • Wood, W. A.: Fermentation of carbohydrates and related compounds. In Gunsalus, I. C. u. R. Y. Stanier: The bacteria. Vol. II, p. 59. New York: Academic Press 1961.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Auszug aus der gleichlautenden Dissertation der mathematisch-naturwissenschaftlichen Fakultät der Universität Göttingen 1963.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gottschalk, G. Die Biosynthese der Poly-β-hydroxybuttersäure durch Knallgasbakterien. Archiv. Mikrobiol. 47, 236–250 (1964). https://doi.org/10.1007/BF00408941

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00408941

Navigation