Skip to main content
Log in

Bakterielles Wachstum bei geringen Substratkonzentrationen

  • Published:
Archiv für Mikrobiologie Aims and scope Submit manuscript

Zusammenfassung

Die theoretische Beziehung zwischen Populationsdichte, Wachstumsrate und der Konzentration des wachstumsbegrenzenden Substrates (Lactat) wurde in Chemostat-Kulturen von Spirillum serpens und Spirillum spec. überprüft. Sobald die Konzentration des begrenzenden Substrates im zulaufenden Medium einen bestimmten Wert unterschritt, wurde die Population ausgewaschen. Diese Schwellenkonzentration des Substrates ist an die Gegenwart suboptimaler Wachstumsbedingungen gebunden, die durch die Stoffwechselaktivität der Organismen sekundär verbessert werden. Unterhalb eines solchen Schwellenwertes der Substratkonzentration-und damit der Populationsdichte-reicht die Produktion eines hypothetischen Metaboliten nicht mehr aus, um eine Wachstumsförderung aufrechtzuerhalten. Die Schwellenkonzentration des Substrates nimmt dementsprechend mit steigender Wachstumsrate ab. Sie kann weiterhin durch Herabsetzen des Redoxpotentials mit Hilfe eines Zusatzes von Ascorbinsäure verringert-aber nicht eliminiert-werden. Das bedeutet, daß ein Teil der wachstumsfördernden Aktivität auf die Reduktionskraft der Population zurückzuführen ist.

Summary

Population density and growth rate of cultures of Spirillum serpens and Spirillum sp. were checked as functions of the concentration of the limiting substrate (lactate) in the chemostat. It was found that under suboptimal conditions of growth, cells may stimulate the rate of growth by metabolic activity. This internal factor becomes perceptible only when the concentration of the limiting substrate (and as a consequence, the population density) drops below a certain value at which the production of the proposed metabolite does not meet the demand for optimal growth-conditions. Threshold concentrations of the limiting substrate-below which washout of the population occurred at a fixed dilution rate-could be decreased (but not eliminated) by lowering the redox potential of the medium by the addition of ascorbic acid. Thus, in the case studied, part of the growth stimulating action of the population was attributed to the reducing power of the cells. It is effective only in the presence of a suboptimal redox potential and increases with the growth rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  • Bünning, E., u. I. Gössel: Eine Wirkung von Chloralhydrat auf Spirillen. Arch. Mikrobiol. 21, 411–413 (1955).

    PubMed  Google Scholar 

  • Bulder, C. J. E. A.: A simple device for steady state cultures of microbes. Experientia (Basel) 16, 565 (1960).

    Google Scholar 

  • Contois, D. E.: Kinetics of bacterial growth: Relationship between population density and specific growth rate of continuous cultures. J. gen. Microbiol. 21, 40–50 (1959).

    PubMed  Google Scholar 

  • Dagley, S., and C. N. Hinshelwood: Physicochemical aspects of bacterial growth. Part. II. Quantitative dependence of the growth rate of Bact. lactis aerogenes on the carbon dioxide content of the gas atmosphere. J. chem. Soc. 1938, 1936–1942.

  • Dawes, E. A., and D. W. Ribbons: The endogenous metabolism of microorganisms. Ann. Rev. Microbiol. 16, 241–264 (1962).

    Article  Google Scholar 

  • Ecker, R. E., and W. R. Lockhart: Influence of initial population of the length of lag. Bact. Proc. 1960, 165.

  • ——: Relationships between initial nutrient concentration and total growth. J. Bact. 82, 80–84 (1961).

    PubMed  Google Scholar 

  • Herbert, D.: Some principles of continuous culture. VII. Int. Congr. Microbiol., Symp. 381–396, Stockholm 1958.

  • Herbert, D.: The chemical composition of microorganisms as a function of their environment. In: Symp. Soc. gen. Microbiol. 11, 391–416 (1961).

  • — and R. C. Telling: The continuous culture of bacteria: a theoretical and experimental study. J. gen. Microbiol. 14, 601–622 (1956).

    PubMed  Google Scholar 

  • Hewitt, L. F.: Oxidation-reduction potentials in bacteriology and biochemistry. Edinburgh: Livingstone Ltd. 1950.

    Google Scholar 

  • Hinshelwood, C. N.: The chemical kinetics of the bacterial cell. Oxford: Clarendon Press 1946.

    Google Scholar 

  • Hohorst, H. J.: L-Laktat, Bestimmung mit Laktat-Dehydrogenase und DPN. In: Methoden der enzymatischen Analyse. Weinheim: Verlag Chemie 1962.

    Google Scholar 

  • Holme, T.: Glycogen formation in continuous culture of Escherichia coli B. In: Cont. Cult. of Microorg. A. Symp. 67–74, Prag 1958.

  • Jannasch, H. W.: Zur Methodik der quantitativen Untersuchung von Bakterienkulturen in flüssigen Medien. Arch. Mikrobiol. 18, 425–430 (1953).

    PubMed  Google Scholar 

  • —: Schwellenkonzentrationen verschiedener Stickstoffquellen für die Vermehrung einiger Bakterien aus nährstoffarmen Gewässern. Arch. Mikrobiol. 31, 114–124 (1958).

    Google Scholar 

  • —: Experimental ecology of a marine Spirillum in the chemostat. 1. Int. Symp. mar. Microbiol. Springfield, Ill.: C. C. Thomas 1961, Chapt. 51.

    Google Scholar 

  • —: Bacterial growth at low population densities. Nature (Lond.) 196, 496–497 (1962).

    Google Scholar 

  • —: Bacterial growth at low population densities (II). Nature (Lond.) 196, 1322(1963).

    Google Scholar 

  • Koburger, J. A., and T. J. Claydon: Identification of substances in milk cultures of Pseudomonas fluorescens which stimulate lactic starter cultures. J. Dairy Sci. 44, 1811–1817 (1961).

    Google Scholar 

  • Lamanna, C., and M. F. Malette: Basic Bacteriology, 2. ed. Baltimore: Williams & Wilkins 1959.

    Google Scholar 

  • Lineweaver, H., and D. Burk: The determination of enzyme dissociation constants. J. Amer. chem. Soc. 56, 658–666 (1934).

    Google Scholar 

  • Lodge, R. M., and C. N. Hinshelwood: Physicochemical aspects of bacterial growth. Part. IX. The lag phase of Bact. lactis aerogenes. J. chem. Soc. 1943, 213–219.

  • McGrew, S. B., and M. F. Malette: Energy of maintainance in Escherichia coli. J. Bact. 83, 844–850 (1962).

    Google Scholar 

  • Meyrath, J.: Size of inoculum and growth kinetics of molds. Experientia (Basel) 18, 41–42 (1962).

    Google Scholar 

  • Monod, J.: Recherches sur la croissance des cultures bactériennes. Paris: Hermann 1942.

    Google Scholar 

  • —: The growth of bacterial cultures. Ann. Rev. Microbiol. 3, 371–394 (1949).

    Article  Google Scholar 

  • —: La technique de culture continue; théorie et applications. Ann. Inst. Pasteur 79, 390–410 (1950).

    Google Scholar 

  • Neish, A. C.: Analytical methods for bacterial fermentations. Nat. Res. Council, Rep. 46-8-3, 42–43 (1954).

  • Novick, A.: Growth of bacteria. Ann. Rev. Microbiol. 9, 97–110 (1955).

    Article  Google Scholar 

  • Novick, A., and L. Szilard: Description of the chemostat. Science 112, 715–716 (1950).

    PubMed  Google Scholar 

  • —, and M. Weiner: Enzyme induction as an all-or-none phenomenon. Proc. Nat. Acad. Sci. (Wash.) 43, 533–566 (1957).

    Google Scholar 

  • Pfennig, N., u. H. W. Jannasch: Biologische Grundfragen bei der homokontinuierlichen Kultur von Mikroorganismen. Ergebn. Biol. 25, 93–135 (1962).

    PubMed  Google Scholar 

  • Pinkava, J.: Laboratoriumstechnik kontinuierlicher Prozesse. Frankfurt a. M.: H. Deutsch 1962.

    Google Scholar 

  • Powell, E. O.: Criteria for growth of contaminants and mutants in continuous culture. J. gen. Microbiol. 18, 259–268 (1958).

    PubMed  Google Scholar 

  • Rahn, O.: Über den Einfluß der Stoffwechselprodukte auf das Wachstum der Bakterien. Zbl. Bakt, II. Abt. 16, 417–129, 609–617 (1906).

    Google Scholar 

  • Sinclair, N. A., and J. L. Stokes: Factors which control maximal growth of bacteria. J. Bact. 83, 1147–1154 (1962).

    PubMed  Google Scholar 

  • Stolp, H.: Ernährungs- und entwicklungsphysiologische Untersuchungen an anaeroben Bakterien. Arch. Mikrobiol. 21, 273–292 (1955).

    PubMed  Google Scholar 

  • Tödt, F.: Elektrochemische Sauerstoffmessungen. Berlin: W. de Gruyter & Co. 1958.

    Google Scholar 

  • van Niel, C. B.: The kinetics of growth of microorganisms. In: The chemistry and physiology of growth. Princeton University Press 1949.

  • Walker, J. R., J. B. Reeves and C. E. Lankford: Kinetics of production of endogenous cell division activators in relation to inoculum density. Bact. Proc. 1962, 37.

  • Williams, M. A., and S. C. Rittenberg: A taxonomic study of the genus Spirillum Ehrenberg. Int. Bull. Bact. Nom. Tax. 7, 49–110 (1957).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Gekürzte Fassung der gleichlautenden Habilitationsschrift der mathematischnaturwissenschaftlichen Fakultät der Universität Göttingen 1963.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jannasch, H.W. Bakterielles Wachstum bei geringen Substratkonzentrationen. Archiv. Mikrobiol. 45, 323–342 (1963). https://doi.org/10.1007/BF00408931

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00408931

Navigation