Skip to main content
Log in

Thermophilic mutants of Pseudomonas fluorescens

  • Published:
Archiv für Mikrobiologie Aims and scope Submit manuscript

Summary

A series of heat tolerant mutants of Pseudomonas fluorescens were obtained which can grow at temperatures up to 54°C, in contrast to a maximum growth temperature of 37°C for the wild type. The minimum temperatures allowing growth of the mutant strains increased to the same extent as their maximum temperatures. Antibiotic sensitivity patterns suggested the mutants had altered ribosomes, but the purified mutant ribosomes showed no significant increase in thermostability. The virulence of the wild and mutant strains for mice correlated with their relative abilities to grow at the mouse body temperature of approximately 37°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, M. B.: The thermophilic aerobic sporeforming bacteria. Bact. Rev. 17, 125–173 (1953).

    PubMed  Google Scholar 

  • Altenburg, L. C., Saunders, G. F.: Properties of hybrid ribosomes formed from the subunits of mesophilic and thermophilic bacteria. J. molec. Biol. 55, 487–502 (1971).

    PubMed  Google Scholar 

  • Bailey, N. T. J.: Statiscal methods in biology. New York: Wiley 1959.

    Google Scholar 

  • Brock, T. D.: Life at high temperatures. Science 158, 1012–1019 (1967).

    PubMed  Google Scholar 

  • Brock, T. D., Freeze, H.: Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile. J. Bact. 98, 289–297 (1969).

    PubMed  Google Scholar 

  • Campbell, L. L.: Purification and properties of an alpha amylase from facultative thermophilic bacteria. Arch. Biochem. Biophys. 54, 154–161 (1955).

    Google Scholar 

  • Davies, J. E.: Studies on the ribosomes of streptomycin-sensitive and resistant strains of Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 51, 659–664 (1964).

    Google Scholar 

  • Dowben, R. M., Weidenmüller, R.: Adaptation of mesophilic bacteria to growth at elevated temperatures. Biochim. biophys. Acta (Amst.) 158, 255–261 (1968).

    Google Scholar 

  • Friedman, S. M., Axel, R., Weinstein, I. B.: Stability of ribosomes and ribosomal ribonucleic acid from Bacillus stearothermophilus. J. Bact. 93, 1521–1526 (1967).

    PubMed  Google Scholar 

  • Garrity, F. L., Detrick, B., Kennedy, E. R.: Deoxyribonucleic acid base composition in the taxonomy of Staphylococcus. J. Bact. 97, 557–560 (1969).

    PubMed  Google Scholar 

  • Imšenecki, A., Solnzeva, L.: The growth of aerobic thermophilic bacteria. J. Bact. 49, 539–546 (1945).

    Google Scholar 

  • Ingram, M.: In: Microbial ecology, Seventh Symposium of the Society for General Microbiology, R. E. O. Williams and C. C. Spicer, Eds. London: Cambridge Univ. Press 1957.

    Google Scholar 

  • Koffler, H., Gale, G. O.: The relative thermostability of cytoplasmic proteins from thermophilic bacteria. Arch. Biochem. Biophys. 67, 249–251 (1957).

    PubMed  Google Scholar 

  • Kulpa, C. F., Olsen, R. H.: Altered ribosome activity upon conversion of Pseudomonas aeruginosa to psychrophily. Bact. Proc. 71, 124 (1971).

    Google Scholar 

  • Larsen, H.: In: The bacteria, Vol. 4, I. C. Gunsalus and R. Y. Stanier, Eds. New York: Academic Press 1962.

    Google Scholar 

  • Liauw, H. L., Geftic, S. G., Adair, F. W., Gelzer, J.: Decreased pathogenicity of Pseudomonas fluorescens resistant to benzalkonium chloride. Bact. Proc. 70, 104 (1970).

    Article  Google Scholar 

  • Mao, J. C. H., Putterman, M.: The intermolecular complex of erythromycin and ribosome. J. molec. Biol. 44, 347–361 (1969).

    PubMed  Google Scholar 

  • McDonald, W. C., Matney, T. S.: Genetic transfer of the ability to grow at 55°C in Bacillus subtilis. J. Bact. 85, 218–220 (1963).

    Google Scholar 

  • Olsen, R. H., Metcalf, E. S.: Conversion of mesophilic to psychrophilic bacteria. Science 162, 1288–1289 (1968).

    PubMed  Google Scholar 

  • Pace, B., Campbell, L. L.: Correlation of maximal growth temperature and ribosome heat stability. Proc. nat. Acad. Sci. (Wash.) 57, 1110–1116 (1967).

    Google Scholar 

  • Reed, L. J., Muench, H.: A simple method of estimating fifty per cent end-points. Amer. J. Hyg. 27, 493–497 (1938).

    Google Scholar 

  • Shen, P. Y., Coles, E., Foote, J. L., Stenesh, J.: Fatty acid distribution in mesophilic and thermophilic strains of the genus Bacillus. J. Bact. 103, 479–481 (1970).

    PubMed  Google Scholar 

  • Stanier, R. Y., Palleroni, N. J., Doudoroff, M.: The aerobic pseudomonads: a taxonomic study. J. gen. Microbiol. 43, 159–271 (1966).

    PubMed  Google Scholar 

  • Weerkamp, A., Heinen, W.: Effect of temperature on the fatty acid composition of the extreme thermophiles, Bacillus caldolyticus and Bacillus caldotenax. J. Bact. 109, 443–446 (1972).

    PubMed  Google Scholar 

  • Zeikus, J. G., Taylor, M. W., Brock, T. D.: Thermal stability of ribosomes and RNA from Thermus aquaticus. Biochim. biophys. Acta (Amst.) 204, 512–520 (1970).

    Google Scholar 

  • Zeikus, J. G., Wolfe, R. S.: Methanobacterium thermoautotrophicus sp. n., an anaerobic, autotrophic, extreme thermophile. J. Bact. 109, 707–713 (1972).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeCicco, B.T., Noon, K.F. Thermophilic mutants of Pseudomonas fluorescens . Archiv. Mikrobiol. 90, 297–304 (1973). https://doi.org/10.1007/BF00408925

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00408925

Keywords

Navigation