Archives of Microbiology

, Volume 116, Issue 1, pp 41–49 | Cite as

Isolation and characterization of Desulfovibrio growing on hydrogen plus sulfate as the sole energy source

  • Werner Badziong
  • Rudolf K. Thauer
  • J. Gregory Zeikus


Two sulfate reducing bacteria (Madison and Marburg strains) that grew on H2 plus sulfate in a mineral salts medium that contained acetate and CO2 as sole carbon source were isolated from diverse environments. During growth in this medium 4.2 mol of H2 were consumed per mol of sulfate reduced to sulfide. Acetate was required for biosynthetic purposes only. Approximately 70% of the cell carbon synthesized was derived from acetate and 30% from CO2. Acetate was not involved in dissimilatory sulfate reduction.

Growth of the bacteria on H2 plus sulfate was linear rather than exponential, and a doubling time at the beginning of linear growth of approximately 3 h was observed. The optimal growth temperature was found to be near 35° C. Cultures could be grown up to a density of 500 mg cells (dry weight) per liter. Growth yield studies demonstrated that between 4 and 5 g of cells (dry weight) were formed per mol of sulfate reduced to sulfide.

The chemolithotrophically growing sulfate reducing isolates were identified as Desulfovibrio species by being obligately anaerobic, gram negative, non spore forming vibrios that contained desulfoviridin and cytochrome c3 (350–450 nmol/g protein). The organisms were found to be monopolarly and monotrichously flagellated. The abilities of the two strains to grow on electron donors other than H2 and to use electron acceptors other than sulfate differed considerably. The DNA base composition of the Madison and Marburg strains were 60 and 63.5 mol % GC, respectively. The taxonomic status of the strains was discussed.

Key words

Desulfovibrio Chemolithotrophic growth H2-Oxidation Sulfate-reduction Growth yields Cell carbon synthesis Acetate assimilation Desulfoviridin Cytochrome c3 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alvarez, M., Barton, L.: Evidence for the presence of phosphoriboisomerase and ribulose-1,5-diphosphate carboxylase in extracts of Desulfovibrio vulgaris. J. Bacteriol. 131, 133–135 (1977)Google Scholar
  2. Andrew, I. G., Morris, J. G.: The biosynthesis of alanin by Clostridium kluyveri. Biochim. Biophys. Acta 97, 176–179 (1965)Google Scholar
  3. Bray, G. A.: A simple efficient liquid scintillator for counting aqueous solutions in a liquid scintillation counter. Analyt. Biochem. 1, 279–285 (1960)Google Scholar
  4. Bryant, M. P., Tzeng, S. F., Robinson, I. M., Joyner, A. E.: Nutrient requirements of methanogenic bacteria. Adv. in Chemistry Series 105, 23–40 (1971)Google Scholar
  5. Campbell, L. L., Postgate, J. R.: Classification of the spore-forming sulfate-reducing bacteria. Bacteriol. Rev. 29, 359–363 (1965)Google Scholar
  6. Daniels, L., Zeikus, J. G.: Improved culture flask for obligate anaerobes. Appl. Microbiol. 29, 710–711 (1975)Google Scholar
  7. DeLey, J.: Reexamination of the association between melting point, buoyant density and the chemical base composition of deoxyribonucleic acid. J. Bacteriol. 101, 738–754 (1970)Google Scholar
  8. Hungate, R. E.: A roll tube method for cultivation of strict anaerobes. In: Methods in microbiology, Vol. 3B (J. R. Norris, D. W. Ribbons, eds.), pp. 117–132. London-New York: Academic Press 1969Google Scholar
  9. Khosrovi, B., MacPherson, R., Miller, J. D. A.: Some observations on growth and hydrogen uptake by Desulfovibrio vulgaris. Arch. Microbiol. 80, 324–337 (1971)Google Scholar
  10. Kröger, A.: The electron transport-coupled phosphorylation of the anaerobic bacterium Vibrio succinogenes. In: Electron transfer chains and oxidative phosphorylation (E. Quagliariello, S. Papa, F. Palmieri, E. C. Slater, N. Siliprandi, eds.), pp. 265–270. Amsterdam-Oxford: North-Holland; New York: American Elsevier 1975Google Scholar
  11. Kröger, A.: Phosphorylative electron transport with fumarate and nitrate as terminal hydrogen acceptors. In: Microbial energetics (B. A. Haddock, W. A. Hamilton, eds.), pp. 61–93. London-New York-Melbourne: Cambridge University Press 1977Google Scholar
  12. Kyryacos, G., Boord, C. E.: Separation of hydrogen, oxygen, nitrogen, methane and carbon monoxide by gas adsorption chromatography. Anal. Chem. 29, 787–788 (1957)Google Scholar
  13. LeGall, J., Postgate, J. R.: The physiology of sulphate-reducing bacteria. Adv. in Microbial. Physiol. 10, 81–133 (1973)Google Scholar
  14. Marmur, J.: A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol. 3, 208–218 (1961)Google Scholar
  15. Mechalas, B. J., Rittenberg, S. C.: Energy coupling in Desulfovibrio desulphuricans. J. Bacteriol. 80, 501–507 (1960)Google Scholar
  16. Mink, R. W., Dugan, P. R.: Tentative identification of methanogenic bacteria by fluorescence microscopy. Appl. Microbiol. 33, 713–717 (1977)Google Scholar
  17. Murphy, M. J., Siegel, M. L., Kamin, H., Der Vartanian, D. V., Lee, J., LeGall, J., Peck, H. D., Jr.: An iron tetrahydroporphyrin prosthetic group common to both assimilatory and dissimilatory sulfite reductases. Biochem. Biophys. Res. Commun. 54, 82–88 (1973)Google Scholar
  18. Peck, H. D.: The ATP-dependent reduction of sulfate with hydrogen in extracts of Desulfovibrio desulfuricans. Proc. Natl. Acad. Sci. U.S.A. 45, 701–708 (1959)Google Scholar
  19. Peck, H. D., Jr.: The role of adenosine-5′-phosphosulfate in the reduction of sulfate to sulfite by Desulfovibrio desulfuricans. J. Biol. Chem. 237, 198–203 (1962)Google Scholar
  20. Peck, H. D., Jr.: Phosphorylation coupled with electron transfer in extracts of the sulfate-reducing bacterium Desulfovibrio gigas. Biochem. Biophys. Res. Commun. 22, 112–118 (1966)Google Scholar
  21. Pfennig, N., Biebl, H.: Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing acetate-oxidizing bacterium. Arch. Microbiol. 110, 3–12 (1976)Google Scholar
  22. Postgate, J. R.: On the autotrophy of Desulfovibrio desulphuricans. Z. Allgem. Mikrobiol. 1, 53–56 (1960)Google Scholar
  23. Postgate, J. R.: Media for sulphur bacteria: some amendments. Lab. Practice 18, 286 (1969)Google Scholar
  24. Postgate, J. R., Campbell, L. L.: Classification of Desulfovibrio species, the nonsporulating sulfate-reducing bacteria. Bacteriol. Rev. 30, 732–738 (1966)Google Scholar
  25. Senez, J. C.: Some considerations on the energetics of bacterial growth. Bacteriol. Rev. 26, 95–107 (1962)Google Scholar
  26. Sorokin, Yu. I.: Sources of energy and carbon for biosynthesis in sulfate-reducing bacterin. Microbiology (USSR) (Engl. Transl.) 35, 643–647 (1966a)Google Scholar
  27. Sorokin, Yu. I.: Investigations of the structural metabolism of sulfate-reducing bacteria with 14C. Microbiology (USSR) (Engl. Transl.) 35, 806–814 (1966b)Google Scholar
  28. Sorokin, Yu. I.: Role of carbon dioxide and acetate in the biosynthesis by sulphate-reducing bacteria. Nature 210, 551–552 (1966c)Google Scholar
  29. Stouthamer, A. H.: A theoretical study on the amount of ATP required for synthesis of microbial cell material. Antonie van Leeuwenhoek. J. Microbiol. Serol. 39, 545–565 (1973)Google Scholar
  30. Stouthamer, A. H., Bettenhausen, C.: Utilization of energy for growth and maintenance in continuous and batch cultures of microorganisms. Biochim. Biophys. Acta 301, 53–70 (1973)Google Scholar
  31. Szarkowaka, L., Klingenberg, M.: On the role of ubiquinone in mitochondria (spectrophotometric and chemical measurements of its redox reactions). Biochem. Z. 338, 674–697 (1963)Google Scholar
  32. Tabatabi, M. A.: Determination of sulfate in water samples. Sulphur. Inst. I 10, 11–13 (1974)Google Scholar
  33. Thauer, R. K., Jungermann, K., Decker, K.: Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41, 100–180 (1977)Google Scholar
  34. Thauer, R. K., Jungermann, K., Henninger, H., Wenning, J., Decker, K.: The energy metabolism of Clostridium kluyveri. Eur. J. Biochem. 4, 173–180 (1968)Google Scholar
  35. Thauer, R. K., Rupprecht, E., Jungermann, K.: The synthesis of one-carbon units from CO2 via a new ferredoxin dependent monocarboxylic acid cycle. FEBS Lett 8, 304–307 (1970)Google Scholar
  36. Tomlinson, N., Barker, H. A.: Carbon dioxide and acetate utilisation by Clostridium kluyveri. I. Influence of nutritional conditions on utilisation patterns. J. Biol. Chem. 209, 585–595 (1954)Google Scholar
  37. Vosjan, J. H.: ATP generation by electron transport in Desulfovibrio desulfuricans. Antonie van Leuwenhoek. J. Microbiol. Serol. 36, 584–586 (1970)Google Scholar
  38. Vosjan, J. H.: Respiration and fermentation of the sulphate-reducing bacterium Desulfovibrio desulfuricans in a continuous culture. Plant and Soil 43, 141–152 (1975)Google Scholar
  39. Widdel, F., Pfennig, N.: A new anaerobic sporing acetate-oxidizing, sulfate-reducing bacterium, Desulfotomaculum acetoxidans. Arch. Microbiol. 112, 119–122 (1977)Google Scholar
  40. Yagi, T., Maruyama, K.: Purification and properties of cytochrome c3 of Desulfovibrio vulgaris, Miyazaki. Biochim. Biophys. Acta 243, 214–224 (1971)Google Scholar
  41. Zeikus, J. G., Bowen, V. G.: Fine structure of Methanospirillum hungatti. J. Bacteriol. 121, 373–380 (1975)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Werner Badziong
    • 1
  • Rudolf K. Thauer
    • 1
  • J. Gregory Zeikus
    • 2
  1. 1.Fachbereich Biologie-MikrobiologiePhilipps-UniversitätMarburgFederal Republic of Germany
  2. 2.Department of BacteriologyUniversity of WisconsinMadisonUSA

Personalised recommendations