Skip to main content
Log in

Sulphated exopolysaccharides produced by two unicellular strains of cyanobacteria, Synechocystis PCC 6803 and 6714

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The exopolysaccharides (EPS) of two unicellular strains of cyanobacteria Synechocystis PCC 6803 and 6714, formed labile, radial structures, uniformly distributed on the cell surface, and stainable by specific dyes for acidic polysaccharides. The two strains produced EPS at similar rates, which depended, along with the duration of the producing phase, on the incubation conditions. The exopolysaccharides from both strains were constituted of at least 11–12 mono-oses, probably forming several types of polymers. They contained about 15–20% (w/w) uronic derivatives and 10–15% (w/w) osamines. Proteins represented 20–40% of total weight. A most interesting feature was the presence of 7–8% (molar ratio) sulphate residues, a characteristic that is otherwise limited to exopolysaccharides produced by eukaryotic algae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EPS:

exopolysaccharides

KDO:

3-deoxy-d-mannooctulosonate

LPS:

lipopolysaccharides

References

  • Adhikari SP, Weckesser J, Jürgens UJ, Golecki JR, Borowiak D (1986) Isolation and chemical characterization of the sheath from the cyanobacterium Chroococcus minutus SAG B.41.79. J Gen Microbiol 132:2595–2599

    Google Scholar 

  • Allen MM (1968) Simple conditions for growth of unicellular blue-green algae on plates. J Phycol 4:1–4

    Google Scholar 

  • Bar-Or Y, Shilo M (1987) Characterization of macromolecular flocculants produced by Phormidium sp. strain J-1 and by Anabaenopsis circularis PCC 6720. Appl Environ Microbiol 53:2226–2230

    Google Scholar 

  • Bergman B (1986) Glyoxylate induced changes in the carbon and nitrogen metabolism of the cyanobacterium Anabaena cylindrica. Plant Physiol 80:698–701

    Google Scholar 

  • Blumenkrantz N, Asboe-Hansen G (1973) New method for quantitative determination of uronic acids. Anal Biochem 54:484–489

    PubMed  Google Scholar 

  • Castets AM, Houmard J, Tandeau de Marsac N (1986) Is cell motility a plasmid-encoded function in the cyanobacterium Synechocystis 6803? FEMS Microbiol Letters 37:277–281

    Article  Google Scholar 

  • Dische Z (1962) Color reactions of hexuronic acids. In: Whistler RL, Wolfrom ML (eds) Methods in carbohydrate chemistry, vol 1. Academic Press, New York London, pp 497–501

    Google Scholar 

  • Drews G (1973) Fine structure and chemical composition of the cell envelopes. In: Carr NG, Whitton BA (eds) The biology of blue-green algae, vol 9. Blackwell Scientific Publications, Oxford London Edinburgh Melbourne, pp 99–116

    Google Scholar 

  • Drews G, Weckesser J (1982) Function, structure and composition of cell walls and external layers. In: Carr NG, Whitton BA (eds) The biology of cyanobacteria, vol 19, Blackwell Scientific Publications, Oxford London Edinburgh Boston Melbourne, pp 333–357

    Google Scholar 

  • Dubois M, Gilles KA, Mamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Google Scholar 

  • Gottschalk G (1986) Bacterial metabolism. Springer, Berlin Heidelberg New York, pp 79–81

    Google Scholar 

  • Grigoricva G, Shestakov S (1982) Transformation in the cyanobacterium Synechocystis sp. 6803. FEMS Microbiol Letters 13:367–370

    Article  Google Scholar 

  • Gudin C, Thépenier C (1986) Bioconversion of solar energy into organic chemicals by microalgae. Adv Biotech Proc 6:73–110

    Google Scholar 

  • Harding NE, Cleary JM, Cabañas DK, Rosen IG, Kang KS (1987) Genetic and physical analyses of a cluster of genes essential for xanthan gum biosynthesis in Xanthomonas campestris. J Bacteriol 169:2854–2861

    PubMed  Google Scholar 

  • Jürgens UJ, Weckesser J (1985) Carotenoid-containing outer membrane of Synechocystis sp. strain PCC 6714. J Bacteriol 164:384–389

    PubMed  Google Scholar 

  • Kilin H (1943) Zur Biochemie der Cyanophyceen. K Fysiograf Salisk Lund Forth 13:64–77

    Google Scholar 

  • Lounatmaa K, Vaara T, Osterlund K, Vaara M (1980) Ultrastructure of the cell wall of a Synechocystis strain. Can J Microbiol 26:204–208

    PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  Google Scholar 

  • Mutaftschiev S, Vasse J, Truchet G (1982) Exostructures of Rhizobium melilott. FEMS Microbiol Letters 13:171–175

    Article  Google Scholar 

  • Nakagawa M, Takamura Y, Yagi O (1987) Isolation and characterization of the slime from a cyanobacterium, Microcystis aeruginosa K-3A. Agric Biol Chem 51:329–337

    Google Scholar 

  • Percival EE, Turvey JR (1979) Polysaccharides of algae. In: Laskin AI, Lechevalier H (eds) CRC Handbook of microbiology, vol 4. CRC Press, Boca Raton, pp 179–195

    Google Scholar 

  • Reed RH, Richardson DL, Warr SRC, Stewart WDP (1984) Carbohydrate accumulation and osmotic stress in cyanobacteria. J Gen Microbiol 130:1–4

    Google Scholar 

  • Remington C (1931) The carbohydrate complex of serum protein. II. Improved method for isolation and redetermination of structure. Isolation of glucosaminodimannose from proteins of ox blood. Biochem J 25:1062–1071

    Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  • Schmidt W, Drews G, Weckesser J, Mayer H (1980) Lipopolysaccharides in four strains of the unicellular cyanobacterium Synechocystis. Arch Microbiol 127:217–222

    Google Scholar 

  • Schrader M, Drews G, Golecki JR, Weckesser J (1982) Isolation and characterization of the sheath from the cyanobacterium Chlorogloeopsis PCC 6912. J Gen Microbiol 128:267–272

    Google Scholar 

  • Scott JE (1965) Fractionation by precipitation with quaternary ammonium salts. In: Whistler RL (ed) Methods in carbohydrate chemistry, vol 5. Acadamic Press, New York London, pp 38–44

    Google Scholar 

  • Sloneker JH (1972) Gas-liquid chromatography of alditol acetates. Whistler RL, BeMiller JN (eds) Methods in carbohydrate chemistry, vol 6. Academic Press, New York London, pp 20–24

    Google Scholar 

  • Sutherland IW (1972) Bacterial exopolysaccharides. In: Rose AH, Tempest DW (eds) Advances in microbial physiology, vol 8. Academic Press, London New York, pp 143–213

    Google Scholar 

  • Sutherland IW (1985) Biosynthesis and composition of gram-negative bacterial extracellular and wall polysaccharides. Ann Rev Microbiol 39:243–270

    Article  Google Scholar 

  • Tease BE, Walker RW (1987) Comparative composition of the sheath of the cyanobacterium Gloeothece ATCC 27152 cultured with and without combined nitrogen. J Gen Microbiol 133:3331–3339

    Google Scholar 

  • Thépenier C, Gudin C (1985) Optimal conditions studies for polysaccharide production by Porphyridium cruentum. MIRCEN J App Microbiol Biotechnol 1:257–268

    Google Scholar 

  • Tillmans J, Philippi K (1929) The carbohydrate content of the important proteins of food stuff and a colorimetric procedure of the determination of nitrogen free sugar in protein. Biochemistry 215:36–40

    Google Scholar 

  • Troy II FA (1979) The chemistry and biosynthesis of selected bacterial capsular polymers. Ann Rev Microbiol 33:519–560

    Article  Google Scholar 

  • Vaara T (1982) The outermost surface structures in chroococcacean cyanobacteria. Can J Microbiol 28:929–941

    Google Scholar 

  • Waravdekar VS, Saslaw LD (1959) A sensitive colorimetric method for the estimation of 2-deoxy sugars with the use of the malonaldehydethiobarbituric acid reaction. J Biol Chem 234:1945–1950

    PubMed  Google Scholar 

  • Weckesser J, Broll C, Adhikary SP, Jürgens UJ (1987) 2-O-methyl-d-xylose containing sheath in the cyanobacterium Gloeothece sp. PCC 6501. Arch Microbiol 147:300–303

    Google Scholar 

  • Weckesser J, Hoffmann K, Jürgens UJ, Whitton BA, Raffelsberger B (1988) Isolation and chemical analysis of the sheaths of the filamentous cyanobacteria Calothrix parietina and C. scopulorum. J Gen Microbiol 134:629–634

    Google Scholar 

  • Whitton BA (1973) Freshwater plankton. In: Carr NG, Whitton BA (eds) The biology of blue-green algae, vol 9. Blackwell Scientific Publications, Oxford London Edinburgh Melbourne, pp 353–367

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panoff, JM., Priem, B., Morvan, H. et al. Sulphated exopolysaccharides produced by two unicellular strains of cyanobacteria, Synechocystis PCC 6803 and 6714. Arch. Microbiol. 150, 558–563 (1988). https://doi.org/10.1007/BF00408249

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00408249

Key words

Navigation