Advertisement

Archiv für Mikrobiologie

, Volume 84, Issue 1, pp 54–68 | Cite as

Sulfolobus: A new genus of sulfur-oxidizing bacteria living at low pH and high temperature

  • Thomas D. Brock
  • Katherine M. Brock
  • Robert T. Belly
  • Richard L. Weiss
Article

Summary

Sulfolobus is a new genus of bacteria characterized as follows: 1. generally spherical cells producing frequent lobes; 2. facultative autotrophy with growth on sulfur or on a variety of simple organic compounds; 3. unusual cell wall structure devoid of peptidoglycan; 4. acidophilic, pH optimum of 2–3 and range from 0.9–5.8; 5. thermophilic with temperature optimum of 70–75°C and range from 55–80°C (one strain grew at 85°C). The DNA base composition of five strains was determined by cesium chloride density gradient centrifugation and found to be 60–68% guanine plus cytosine. Sulfolobus apparently has no close relationship with any previously described bacteria, either heterotrophic or autrotrophic. Techniques are presented for distinguishing Sulfolobus from Thermoplasma, another genus of acidophilic thermophilic spherically shaped organisms. Sulfolobus has been isolated from a variety of natural acidic thermal habitats, both terrestrial and aquatic. Most isolations have been from habitats in Yellowstone National Park, but strains were also isolated from Italy, Dominica and El Salvador. It is suggested that Sulfolobus may be an important geochemical agent in the production of sulfuric acid from sulfur in high temperature hydrothermal systems.

Keywords

Cytosine Cesium Peptidoglycan Hydrothermal System Density Gradient Centrifugation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, M. B.: Studies with Cyanidium caldarium, an anomalously pigmented chlorophyte. Arch. Mikrobiol. 32, 270–277 (1959).PubMedGoogle Scholar
  2. Brierley, C. L.: M. S. Thesis, New Mexico Institute of Mining and Technology, Socorro 1971.Google Scholar
  3. Brierley, J. A.: Ph. D. Thesis, Montana State University, Bozeman 1966.Google Scholar
  4. Chargaff, E., Davidson, J. N.: The nucleic acids, vol. 1, p. 301. New York: Academic Press Inc. 1955.Google Scholar
  5. Darland, G., Brock, T. D.: Bacillus acidocaldarius, sp. nov., an acidophilic thermophilic spore-forming bacterium. J. gen. Microbiol. 67, 9–15 (1971).Google Scholar
  6. ——, Samsonoff, W., Conti, S. F.: A thermophilic, acidophilic mycoplasma isolated from a coal refuse pile. Science 170, 1416–1418 (1970).PubMedGoogle Scholar
  7. Kaplan, I. R.: Evidence of microbiological activity in some of the geothermal regions of New Zealand. N. Z. J. Sci. Techn. 37, 639–662 (1956).Google Scholar
  8. Larsen, H.: Biochemical aspects of extreme halophilism. Advanc. Microbial Physiol. 1, 97–132 (1967).Google Scholar
  9. Lowry, O., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. biol. Chem. 193, 265–275 (1951).PubMedGoogle Scholar
  10. Marmur, J.: A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. molec. Biol. 3, 208–218 (1961).Google Scholar
  11. Reynolds, E. S.: The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963).CrossRefPubMedGoogle Scholar
  12. Ryter, A., Kellenberger, E.: Etude au microscope électronique de plasma contenant de l'acide deoxyribonucléique. Z. Naturforsch. 133, 597–605 (1958).Google Scholar
  13. Schildkraut, C. L., Marmur, J., Doty, P.: Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J. molec. Biol. 4, 430–443 (1962).PubMedGoogle Scholar
  14. Schoen, R., Ehrlich, G. G.: Bacterial origin of sulfuric acid in sulfurous hot springs. Twenty-third International Geological Congress, vol. 17, pp. 171–178. Prague 1968.Google Scholar
  15. —, Rye, R. O.: Sulfur isotope distribution in solfataras, Yellowstone National Park. Science 170, 1082–1084 (1970).Google Scholar
  16. Schwartz, A., Schwartz, W.: Geomikrobiologische Untersuchungen. VII. Über das Vorkommen von Mikroorganismen in Solfataren und heißen Quellen. Z. allg. Mikrobiol. 5, 395–405 (1965).Google Scholar
  17. Tipper, D. J.: Alkali-catalyzed elimination of d-lactic acid from muramic acid and its derivatives and the determination of muramic acid. Biochemistry 7, 1441–1449 (1968).Google Scholar
  18. Trevelyan, W. E., Harrison, J. S.: Studies on yeast metabolism. I. Fractionation and microdetermination of cell carbohydrates. Biochem. J. 50, 298–302 (1952).PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • Thomas D. Brock
    • 1
    • 2
  • Katherine M. Brock
    • 1
    • 2
  • Robert T. Belly
    • 1
    • 2
  • Richard L. Weiss
    • 1
    • 2
  1. 1.Department of BacteriologyUniversity of WisconsinMadisonUSA
  2. 2.Department of MicrobiologyIndiana UniversityBloomingtonUSA

Personalised recommendations