Skip to main content
Log in

One carbon metabolism in methanogenic bacteria

Cellular characterization and growth of Methanosarcina barkeri

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Two strains of Methanosarcina (M. Barkeri strain MS, isolated from sewage sludge, and strain UBS, isolated from lake sediments) were found to have similar cellular properties and to have DNA base compositions of 44 mol percent guanosine plus cytosine. Strain MS was selected for further studies of its one-carbon metabolism. M. barkeri grew autotrophically via H2 oxidation/CO2 reduction. The optimum temperature for growth and methanogenesis was 37°C. H2 oxidation proceeded via an F420-dependent NADP+-linked hydrogenase. A maximum specific activity of hydrogenase in cell-free extracts, using methyl viologen as electron acceptor, was 6.0 μmol min · mg protein at 37°C and the optimum pH (9.0). M. barkeri also fermented methanol andmethylamine as sole energy sources for growth. Cell yields during growth on H2/CO2 and on methanol were 6.4 and 7.2 mg cell dry weight per mmol CH4 formed, respectively. During mixotrophic growth on H2/CO2 plus methanol, most methane was derived from methanol rather than from CO2. Similar activities of hydrogenase were observed in cell-free extracts from H2/CO2-grown and methanol-grown cells. Methanol oxidation apparently proceeded via carrierbound intermediates, as no methylotrophy-type of methanol dehydrogenase activity was observed in cell-free extracts. During growth on methanol/CO2, up to 48% of the cell carbon was derived from methanol indicating that equivalent amounts of cell carbon were derived from CO2 and from an organic intermediate more reduced than CO2. Cell-free extracts lacked activity for key cell carbon synthesis enzymes of the Calvin cycle, serine path, or hexulose path.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CAPS:

cycloaminopropane sulfonic acid

CH3-SCoM:

methyl coenzyme M

DCPIP:

2,6-dichlorophenolindophenol

DEAE:

diethylaminoethyl

dimethyl POPOP:

1,4-bis-2-(4-mothyl-5-phenyloxazolyl)-benzene

DNA:

deoxyribonucleic acid

dpm:

dismtegrations per min

DTT:

dithiothreitol

EDTA:

ethylenediamine tetraacetic acid

F420 :

factor 420

G+C:

guanosine plus cytosine

NAD+ :

nicotinamide adenine dinucleotide

NADP+ :

nicotinamide adenine dinucleotide phosphate

PBBW:

phosphate buffered basal Weimer

PMS:

phenazine methosulfate

PPO:

2,5-diphenyloxazole

rRNA:

ribosomal ribonucleic acid

RuBP:

ribulose-1,5-bisphosphate

Tris:

tris-hydroxymethyl-aminomethane

μmax:

maximum specific growth rate

References

  • Anthony, C., Zatman, L. J.: The microbial oxidation of methanol: Purification and properties of the alcohol dehydrogenase of Pseudomonas sp. M27. Biochem. J. 104, 953–959 (1967)

    PubMed  Google Scholar 

  • Barker, H. A.: Bacterial fermentations, 95 pp. New York Wiley 1956

    Google Scholar 

  • Bryant, M. P.: Commentary on the Hungate technique for culture of anaerobic bacteria. Am. J. Clin. Nutr. 25, 1324–1328 (1972)

    PubMed  Google Scholar 

  • Cheeseman, P., Toms-Wood, A., Wolfe, R. S.: Isolation and properties of a fluorescent compound, F420, from Methanobacterium strain M.O.H. J. Bacteriol. 112, 527–531 (1972)

    PubMed  Google Scholar 

  • Coultate, T. P., Sundarum, T. K.: Energetics of Bacillus stearothermophilus growth: Molar growth yield and temperature effects on growth efficiency. J. Bacteriol. 121, 55–74 (1975)

    PubMed  Google Scholar 

  • Daniels, L., Fuchs, G., Thauer, R. K., Zeikus, J. G.: Carbon monoxide oxidation by methanogenic bacteria. J. Bacteriol. 132, 118–126 (1977)

    PubMed  Google Scholar 

  • DeLey, J.: Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J. Bacteriol. 101, 738–754 (1970)

    PubMed  Google Scholar 

  • Ferenci, T., Strom, T., Quayle, J. R.: Purification and properties of 3-hexulose phosphate synthase and phospho-3-hexuloisomerase from Methylococcus capsulatus. Biochem. J. 144, 477–486 (1974)

    PubMed  Google Scholar 

  • Fox, G. E., Magrum, L. J., Balch, W. E., Wolfe, R. S., Woese, C. R.: Classification of methanogenic bacteria by 16S ribosomal RNA characterization. Proc. Natl. Acad. Sci. (U.S.A.) 74, 4537–4541 (1977)

    Google Scholar 

  • Gunsalus, R., Eirich, D., Romesser, J., Balch, W., Shapiro, S., Wolfe, R. S.: Methyl transfer and methane formation. In: Proceedings of the symposium “Microbial production and utilization of gases (H2, CH4, CO)” (H. G. Schlegel, G. Gottschalk, N. Pfennig, eds.), pp. 191–197, Akademie der Wissenschaften zu Göttingen. Göttingen: Goltze 1976

    Google Scholar 

  • Hungate, R. E.: The anaerobic mesophilic cellulolytic bacteria. Bacteriol. Rev. 14, 1–49 (1950)

    PubMed  Google Scholar 

  • Kandler, O., Hippe, H.: Lack of peptidoglycan in the cell walls of Methanosarcina barkeri. Arch. Microbiol. 113, 57–60 (1977)

    PubMed  Google Scholar 

  • Kluyver, A. J., Schnellen, G. T. P.: Fermentation of carbon monoxide by pure cultures of methane bacteria. Arch. Biochem. 14, 57–70 (1947)

    Google Scholar 

  • Large, P. J., Peel, D., Quayle, J. R.: Microbial growth on C1 compounds. 2. Synthesis of cell constituents by methanol- and formate-grown Pseudomonas AMI, and methanol grown Hyphomicrobium vulgare. Biochem. J. 81, 470–480 (1961)

    Google Scholar 

  • Lilley, R. McC., Walker, D. A.: An improved spectrophotometric assay for ribulose-biphosphate carboxylase. Bioch. Biophys. Acta 358, 226–229 (1974)

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. I.: Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951)

    PubMed  Google Scholar 

  • McBride, B. C., Wolfe, R. S.: A new coenzyme of methyl transfer, coenzyme M. Biochemistry 10, 2317–2324 (1971)

    PubMed  Google Scholar 

  • Mah, R. A., Ward, D. M., Baresi, L., Glass, T. L.: Biogenesis of methane. Ann. Rev. Microbiol. 31, 309–341 (1977)

    Google Scholar 

  • Marmur, J.: A procedure for isolation of deoxyribonucleic acid from microorganisms. J. Mol. 3, 209–218 (1961)

    Google Scholar 

  • Nash, T.: The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem. J. 55, 416–421 (1953)

    PubMed  Google Scholar 

  • Nelson, D. R., Zeikus, J. G.: Rapid method for the radioisotopic analysis of gaseous products of anaerobic metabolism. Appl. Microbiol. 28, 258–261 (1974)

    PubMed  Google Scholar 

  • Racker, E.: The reductive pentose phosphate cycle. I. Phosphoribulokinase and ribulose diphosphate carboxylase. Arch. Biochem. Biophys. 69, 300–310 (1957)

    PubMed  Google Scholar 

  • Roberton, A. M., Wolfe, R. S.: Adenosine triphosphate pools in Methanobacterium. J. Bacteriol. 102, 43–51 (1970)

    PubMed  Google Scholar 

  • Stadtman, T. C., Methane fermentation. Ann. Rev. Microbiol. 21, 121–142 (1967)

    Google Scholar 

  • Stadtman, T. C., Barker, H. A.: Studies on the methane fermentation. IX. The origin of methane in the acetate and methanol fermentation by Methanosarcina. J. Bacteriol. 61, 81–86 (1951)

    PubMed  Google Scholar 

  • Stouthamer, A. H.: Determination of significance of molar growth yields. In: Methods in microbiology, Vol. 1 (J. R. Norris, D. W. Ribbons, eds.), pp. 629–663. New York: Academic Press 1969

    Google Scholar 

  • Taylor, C. D., McBride, B. C., Wolfe, R. C., Bryant, M. P.: Coenzyme M, essential for growth of a rumen strain of Methanobacterium ruminantium. J. Bacteriol. 120, 974–975 (1974)

    PubMed  Google Scholar 

  • Taylor, G. T., Kelly, D. P., Pirt, S. J.: Intermediarymetabolism in methanogenic bacteria (Methanobacterium). In: Proceedings of the symposium “Microbial production and utilization of gases (H2, CH4, CO)” (H. G. Schlegel, G. Gottschalk, N. Pfennig, eds.), pp. 173–180, Akademie der Wissenschaften zu Göttingen. Göttingen: Goltze 1976

    Google Scholar 

  • Taylor, G. T., Pirt, S. J.: Nutrition and factors limiting the growth of a methanogenic bacterium (Methanobacterium thermoautotrophicum). Arch. Microbiol., 113, 17–22 (1977)

    PubMed  Google Scholar 

  • Tzeng, S. F., Wolfe, R. S., Bryant, M. P.: Factor 420-dependent pyrdine nucleotide-linked hydrogenase system of Methanobacterium ruminantium. J. Bacteriol. 121, 184–191 (1975)

    PubMed  Google Scholar 

  • Wolfe, R. S.: Microbial formation of methane. Adv. Microb. Physiol. 6, 107–146 (1971)

    PubMed  Google Scholar 

  • Wolin, E. A., Wolin, M. J., Wolfe, R. S.: Formation of methane by bacterial extracts. J. Biol. Chem. 238, 2882–2886 (1963)

    PubMed  Google Scholar 

  • Zeikus, J. G.: The biology of methanogenic bacteria. Bacteriol. Rev. 41, 514–541 (1977)

    PubMed  Google Scholar 

  • Zeikus, J. G., Bowen, V. G.: Comparative ultrastructure of methanogenic bacteria. Can. J. Microbiol. 21, 121–129 (1975)

    PubMed  Google Scholar 

  • Zeikus, J. G., Fuchs, G., Kenealy, W. R., Thauer, R. K.: Oxidoreductases involved in cell carbon synthesis in Methanobacterium thermoautotrophicum. J. Bacteriol. 132, 604–613 (1977)

    PubMed  Google Scholar 

  • Zeikus, J. G., Winfrey, M. R.: Temperature limitations of methanogenesis in aquatic sediments. App. Env. Microbiol. 31, 99–107 (1976)

    Google Scholar 

  • Zhilina, T. N., Aleksandruskina, N. I.: On the taxonomy of Methanosarcina. Mikrobiologiya 43, 726–728 (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weimer, P.J., Zeikus, J.G. One carbon metabolism in methanogenic bacteria. Arch. Microbiol. 119, 49–57 (1978). https://doi.org/10.1007/BF00407927

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00407927

Key words

Navigation