Skip to main content
Log in

The intracellular polyglucose storage granules of Spirochaeta aurantia

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Extracts of Spirochaeta aurantia contained granules approximately 36 nm in diameter. These granules were purified by isopycnic centrifugation on CsCl gradients and shown on the basis of chemical and spectroscopic evidence to be glycogen. Electron microscopic cytochemical methods revealed glycogen-like granules in S. aurantia cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson DL, Johnson RC (1968) Electron microscopy of immune disruption of leptospires: action of complement and lysozyme. J Bacteriol 95:2293–2309

    Google Scholar 

  • Bender H (1979) Glycogen from Klebsiella pneumoniae M5 al and Escherichia coli K12. Eur J Appl Microbiol Biotechnol 8:279–287

    Google Scholar 

  • Beudeker RF, Kerver JWM, Kuenen JG (1981) Occurrence, structure and function of intracellular polyglucose in the obligate chemolithotroph Thiobacillus neapolitanus. Arch Microbiol 129:221–226

    Google Scholar 

  • Breznak JA, Canale-Parola E (1972) Metabolism of Spirochaeta aurantia. I. Anaerobic enery-yielding pathways. Arch Mikrobiol 83:261–277

    Google Scholar 

  • Breznak JA, Canale-Parola E (1975) Morphology and physiology of Spirochaeta aurantia strains isolated from aquatic habitats. Arch Microbiol 105:1–12

    Google Scholar 

  • Chao L, Bowen CC (1971) Purification and properties of glycogen isolated from a blue-green alga, Nostoc muscorum. J Bacteriol 105:331–338

    Google Scholar 

  • Cheng K-J, Hironaka R, Roberts DWA, Costerton JE (1973) Cytoplasmic glycogen inclusions in cells of anaerobic gram-negative rumen bacteria. Can J Microbiol 19:1501–1506

    Google Scholar 

  • Cheng K-J, Brown RG, Costerton JW (1977) Characterization of a cytoplasmic reserve glucan from Ruminococcus albus. Appl Environ Microbiol 33:718–724

    Google Scholar 

  • Dubois M, Giles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Google Scholar 

  • Eidels L, Edelmann PL, Preiss J (1970) Biosynthesis of bacterial glycogen. VII. Activation and inhibition of the adenosine diphosphoglucose pyrophosphorylase of Rhodopseudomonas capsulata and of Agrobacterium tumefaciens. Arch Biochem Biophys 140:60–74

    Google Scholar 

  • Greenberg EP, Canale-Parola E (1975) Carotenoid pigments of facultatively anaerobic spirochetes. J Bacteriol 123:1006–1012

    Google Scholar 

  • Hansen SA (1975) Thin layer chromatographic method for the identification of mono-, di- and trisaccharides. J Chromatogr 107:224–226

    Google Scholar 

  • Hanson RS, Phillipps JA (1981) Chemical composition. In: Gerhardt P, Murray RGE, Costilow RN, Nester WE, Wood WA, Kreig NR, Phillips GB (eds) Manual of methods in general bacteriology. American Society for Microbiology, Washington, pp 329–364

    Google Scholar 

  • Harwood CS, Canale-Parola E (1984) Ecology of spirochetes. Ann Rev Microbiol 38:161–192

    Google Scholar 

  • Hespell RB, Canale-Parola E (1970) Spirochaeta litoralis sp. n., a strictly anaerobic marine spirochete. Arch. Mikrobiol 74:1–18

    Google Scholar 

  • Holt SC (1978) Anatomy and chemistry of spirochetes. Microbiol Rev 42:114–160

    Google Scholar 

  • Hovind-Hougen K, Ellis WA, Birch-Andersen A (1981a) Leptospira parva sp. nov.: Some morphological and biological characters. Zbl Bakt Hyg 1 Abt Orig A 250:343–352

    Google Scholar 

  • Hovind-Hougen K, Cinco M, Roomans GM, Birch-Andersen A (1981b) Electrton microscopy and X-ray microanalysis of a halophilic leptospire. Arch Microbiol 130:339–343

    Google Scholar 

  • Joseph R, Holt SC, Canale-Parola E (1973) Peptidoglycan of freeliving anaerobic spirochetes. J Bacteriol 115:426–435

    Google Scholar 

  • Karnovsky MJ (1971) Use of ferrocyanide-reduced osmium tetroxide in electron microscopy. Proc 11th Ann Meet Am Soc Cell Biol, p 146

  • Krisman CR (1962) A method for the colorimetric estimation of glycogen with iodine. Anal Biochem 4:17–23

    Google Scholar 

  • Konig H, Skorko R, Zillig W (1982) Glycogen in thermoacidophilic archaebacteria of the genera Sulfolobus, Thermoproteus, Desulfurococcus and Thermococcu. Arch Microbiol 132:297–303

    Google Scholar 

  • Krebs HG, Heusser D, Wimmer H (1969) Spray reagents In: Stahl E (ed) Thin layer chromatography a laboratory handbook. Springer, Berlin Heidelberg New York, p 887

    Google Scholar 

  • Kuzio J, Kropinski AM (1983) O-antigen conversion in Pseudomonas aeruginosa PAO1 by bacteriophage D3. J Bacteriol 155:203–212

    Google Scholar 

  • Lindner JGEM, Marcelis JH, Devos NM, Hoogkamp-Korstanje JAA (1979) Intracellular polysaccharide of Bacteroides fragilis. J Gen Microbiol 111:93–99

    Google Scholar 

  • Linton JD, Cripps RE (1978) The occurrence of intracellular polyglucose storage granules in Methylococcus NCIB 11083 grown in chemostat cultures on methane. Arch Microbiol 117:41–48

    Google Scholar 

  • Morris, GA, Hall LD (1982) Experimental chemical shift correlation maps from heteronuclear two-dimensional nuclear magnetic resonance spectroscopy. II. Carbon-13 and proton chemical shifts of α-D-glucopyranose oligomers. Can J Chem 60:2431–2441

    Google Scholar 

  • Murray PA, Zindner SN (1985) Polysaccharide reserve material in the acetotrophic methanogen, Methanosarcina thermophila strain TM-1: accumulation and mobilization. Arch Microbiol 147:109–116

    Google Scholar 

  • Preiss J (1984) Bacterial glycogen synthesis and its regulation. Ann Rev Microbiol 38:419–548

    Google Scholar 

  • Racker EE, Violand B, O'Neal S, Alfonso M, Telford J (1979) Reconsitution, a way of biochemical research: some new approaches to membrane-bound enzymes. Arch biochem Biophys 198:470–477

    Google Scholar 

  • Rytér A, Kellenberger E, Birch-Andersen A, Maalóe O (1958) Étude au microscope électronique de plasma contenant de l'acides desoxyribonucléique. I. Les nucléotidés des bactéries en croissante active. Z Naturforsch 13B:597–605

    Google Scholar 

  • Stanton TB, Canale-Parola E (1980) Treponema bryantii sp. nov., a rumen spirochete that interacts with cellulolytic bacteria. Arch Microbiol 127:145–156

    Google Scholar 

  • Stevens SE, Balkwill DL, Paone DAM (1981) The effects of nitrogen limitation on the ultrastructure of the cyanobacterium Agmenellum quadruplicotus. Arch Microbiol 130:204–212

    Google Scholar 

  • Yanagihara Y, Kamisango K, Yasuda S, Kobayashi S, Mifuchi T, Azuma I, Yamamura Y, Johnson RC (1984) Chemical composition of cell walls and polysaccharide fractions of spirochetes. Microbiol Immunol 28:535–544

    Google Scholar 

  • Zilic Z, Blau N, Knob M (1979) Simple rapid method for the separation and quantitative analysis of carbohydrates in biological fluids. J Chromatogr 164:91–94

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kropinski, A.M., Ghiorse, W.C. & Greenberg, E.P. The intracellular polyglucose storage granules of Spirochaeta aurantia . Arch. Microbiol. 150, 289–295 (1988). https://doi.org/10.1007/BF00407794

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00407794

Key words

Navigation