Skip to main content
Log in

Disproving the hypothesis of a common ancestry for the Ochromonas danica chrysoplast and Heliobacterium chlorum

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The phylogenetic position of the golden-yellow alga Ochromonas danica chrysoplast was investigated by comparison of the 16S rRNA catalogue and two long 16S rRNA stretches (804 and 454 bases) with catalogues from eubacteria and chloroplasts and with homologoes 16S rRNA regions from Escherichia coli, Bacillus subtilis, Heliobacterium chlorum, Anacystis nidulans and chloroplasts from Zea mays, Nicotiana tabacum, Euglena gracilis and Chlamydomonas reinhardii, respectively. Both approaches indicate a closer relationship of the chrysoplast to chloroplasts and cyanobacteria than to the brownish photoheterotrophic Heliobacterium chlorum for which a common ancestry has recently been hypothesized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bonen L, Doolittle WF (1975) On the prokaryotic nature of red algal chloroplasts. Proc Natl Acad Sci USA 72: 2310–2314

    Google Scholar 

  • Bonen L, Doolitle WF (1976) Partial sequences of 16S rRNA and the phylogeny of blue-green algae and chloroplasts. Nature 261: 669–673

    Google Scholar 

  • Bonen L, Doolitle WF, Fox GE (1979) Cyanobacterial evolution: results of 16S ribosomal ribonucleic acid sequence analysis. Can J Biochem 57: 879–888

    Google Scholar 

  • Brockmann H, Lipinsky A (1983) Bacteriochlorophyll g. A new bacteriochlorophyll from Heliobacterium chlorum. Arch Microbiol 136: 17–19

    Google Scholar 

  • Brosius J, Palmer JL, Kennedy JP, Noller HF (1978) Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci USA 75: 4801–4805

    Google Scholar 

  • Dron M, Rahire M, Rochaix D (1982) Sequence of the chloroplast-16S rRNA gene and its surrounding regions of Chlamydomonas reinhardii. Nucl Acids Res 10: 7609–7620

    Google Scholar 

  • Embley M, Smida J, Stackebrandt E (1988) Reverse transcriptase sequencing of 16S ribosomal RNA from Faenia rectivirgula, Pseudonocardia thermophila and Saccharopolyspora hirsuta. J Gen Microbiol 134: 961–966

    Google Scholar 

  • Faminitzin A (1907) Die Symbiose als Mittel der Synthese von Organismen. Biol Zbl 27: 353–364

    Google Scholar 

  • Felsenstein J (1982) Numerical methods for inferring evolutionary trees. Q Rev Biol 57: 379–404

    Google Scholar 

  • Fitch WM, Margoliash E (1967) Construction of phylogenetic trees: a method based on mutation distances as estimated from cytochrome C sequences is of general applicability. Science 155: 279–284

    Google Scholar 

  • Fox GE, Pechman KR, Woese CR (1977) Comparative cataloguing of 16S ribosomal ribonucleic acid: molecular approach to prokaryotic systematics. Int J Syst Bacteriol 27: 44–57

    Google Scholar 

  • Fox GE, Stackebrandt E, Hespell RB, Gibson J, Maniloff J, Dyer TA, Wolfe RS, Balch WE, Tanner R, Magrum L, Zablen LB, Blakemore R, Gupta R, Bonen L, Lewis BJ, Stahl DA, Luehrsen KR, Chen KN, Woese CR (1980) The phylogeny of prokaryotes. Science 209: 457–463

    Google Scholar 

  • Gest H, Favinger JC (1983) Heliobacterium chlorum, an anoxygenic brownish-green photosynthetic bacterium containing a “new” form of bacteriochlorophyll. Arch Microbiol 136: 11–16

    Google Scholar 

  • Graf L, Roux E, Stutz E, Kössel H (1982) Nucleotide sequence of a Euglena gracilis chloroplast gene coding for the 16S rRNA: homologies to E. coli and Zea mays chloroplast 16S rRNA. Nucl Acids Res 10: 6369–6381

    Google Scholar 

  • Gray M (1983) The bacterial ancestry of plastids and mitochondria. Bioscience 33: 693–699

    Google Scholar 

  • Gray M, Doolittle F (1982) Has the endosymbiont hypothesis been proven? Microbiol Rev 46: 1–42

    Google Scholar 

  • Hori H (1975) Evolution of 5S RNA. J Mol Evol 7: 75–86

    Google Scholar 

  • Hori H, Osawa S (1979) Evolutionary change in 5S RNA secondary structure and a phylogenetic tree of 54 5S rRNA species. Proc Natl Acad Sci USA 76: 381–385

    Google Scholar 

  • Krupp G, Gross HJ (1983) Sequence analysis of in vitro P32-labeled RNA. In: Agris PF, Kopper A (eds) The modified nucleosides of transfer RNA, II. Alan R Liss, Inc, New York, pp 11–48

    Google Scholar 

  • Lane DJ, Pace G, Olsen GJ, Stahl DA, Sogin ML, Pace NR (1985) Rapid determination of 16S ribosomal RNA sequence for phylogenetic analysis. Proc Natl Acad Sci USA 82: 6955–6959

    Google Scholar 

  • Margulis L (1968) Evolutionary criteria in thallophytes: a radical alternative. Science 161: 1020–1022

    Google Scholar 

  • Margulis L, Obar R (1985) Heliobacterium and origin of chrysoplasts. Biosystems 17: 317–325

    Google Scholar 

  • Mereschkowsky C (1905) Über Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biol Zbl 25: 593–604

    Google Scholar 

  • Michalski TJ, Hunt JE, Bowman MK, Smith U, Bardeen K, Gest H, Norris JR, Katz JJ (1987) Bacteriopheophytin g: Properties and some speculations on a possible primary role for bacteriochlorophylls b and g in the biosynthesis of chlorophylls. Proc Natl Acad Sci USA 84: 2570–2574

    Google Scholar 

  • Phillips DO, Carr NG (1975) Hybridization of prokaryotic and eukaryotic 5S rRNA to Euglena gracilis chloroplast DNA. FEBS Lett 60: 94–97

    Google Scholar 

  • Queen C, Korn LJ (1984) A comprehensive sequence analysis program for the IBM personal computer. Nucl Acids Res 12: 581–599

    Google Scholar 

  • Schwartz RM, Dayhoff MO (1978) Origins of prokaryotes, mitochondria and chloroplasts. Science 199: 395–403

    Google Scholar 

  • Schwarz A, Kössel H (1980) The primary structure of 16S rRNA from Zea mays chloroplast is homologous to E. coli 16S rRNA. Nature 283: 739–742

    Google Scholar 

  • Seewaldt E, Stackebrandt E (1982) Partial sequence of 16S ribosomal RNA and the phylogeny of Prochloron. Nature 295: 618–620

    Google Scholar 

  • Sogin ML, Elwood HJ, Gunderson JH (1986) Evolutionary diversity of eukaryotic small-subunit rRNA genes. Proc Natl Acad Sci USA 83: 1383–1387

    Google Scholar 

  • Stackebrandt E (1983) A phylogenetic analysis of Prochloron. Endocytobiology Vol II: 921–932

    Google Scholar 

  • Stackebrandt E, Woese CR (1981) The evolution of prokaryotes. In: Carlile MJ, Collins JR, Moseley BEB (eds) Molecular and cellular aspects of microbial evolution. Cambridge University Press, Cambridge, pp 1–31

    Google Scholar 

  • Stackebrandt E, Ludwig W, Fox GE (1985) 16SrRNA oligonucleotide cataloguing. In: Gottschalk G (ed) Methods in microbiology, vol 18. Academic Press, London, pp 7–107

    Google Scholar 

  • Stewart GC, Bott KF (1983) DNA sequence of the tandem ribosomal RNA promoter for B. subtilis operon rrn B. Nucl Acids Res 11: 6289–6300

    Google Scholar 

  • Stöcklein L (1983) Phylogenetische Untersuchungen an Eukaryonten mit Hilfe der vergleichenden Analyse der 18S rRNA. pHD Thesis, Technical University, Munich, FRG

    Google Scholar 

  • Tohdoh N, Sugiura M (1982) The complete nucleotide sequence of a 16S ribosomal RNA gene from tobacco chloroblasts. Gene 17: 213–218

    Google Scholar 

  • Tomoika N, Sugiura M (1983) The complete nucleotide sequence of a 16S ribosomal RNA gene from a blue-green alga Anacystis nidulans. Mol Gen Genet 191: 46–50

    Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51: 221–271

    Google Scholar 

  • Woese CR, Debrunner-Vossbrinck B, Oyaizu H, Stackebrandt E, Ludwig W (1985a) Gram-positive bacteria: possible photosynthetic ancestry. Science 229: 762–765

    Google Scholar 

  • Woese CR, Stackebrandt E, Ludwig W (1985b) What are mycoplasmas: the relationship of tempo and mode in bacterial evolution. J Mol Evol 21: 305–316

    Google Scholar 

  • Zablen LB, Kissel MS, Woese CR, Buetow DE (1975) Phylogenetic origin of the chloroplast and procaryotic nature of its ribosomal RNA. Proc Natl Acad Sci USA 72: 2418–2422

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Witt, D., Stackebrandt, E. Disproving the hypothesis of a common ancestry for the Ochromonas danica chrysoplast and Heliobacterium chlorum . Arch. Microbiol. 150, 244–248 (1988). https://doi.org/10.1007/BF00407787

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00407787

Key words

Navigation