Skip to main content
Log in

Glucocorticoid receptors and inhibition of neonatal mouse dermal fibroblast growth in primary culture

  • Original Contributions
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Summary

Primary cultures of dermal fibroblasts from neonatal mice were used to investigate some of the anti-inflammatory effects of glucocorticoids in vitro as influenced by the genetic background of two different strains of mice (A/J and C57 B1/6J). Fibroblasts were cultured in the absence or presence of various glucocorticoids for 2–7 days. After 4–7 days in the presence of steroid, DNA synthesis was reduced by 50–85% while protein synthesis was inhibited by 50–60%. Corticosterone produced a dose-dependent inhibition of DNA synthesis in these cells with a 50% reduction occurring at 10 nM. Specific, high affinity, low capacity binding proteins for [3H]dexamethasone or [3H]triamcinolone acetonide were identified in the cytoplasm of neonatal dermal fibroblasts which had an apparent Kd of 9 nM and ∼5,200–6,400 binding sites/cell. Sedimentation analysis of the [3H]triamcinolone acetonide-receptor complexes on low salt glycerol gradients exhibited binding in the 7 to 8 S region of the gradients. These studies demonstrate that inhibition of growth of primary cultures of mouse neonatal dermal fibroblasts by glucocorticoids is probably mediated by a receptor-mediated pathway, and that this primary culture system might be useful in delineating other anti-inflammatory effects of glucocorticoids in vitro.

Zusammenfassung

Es wurden Primärkulturen dermaler Fibroblasten aus neugeborenen Mäusen verwandt, um einige der entzündungshemmenden Wirkungen der Glukocorticoide in vitro unter dem Einfluß des genetischen Hintergrunds zweier verschiedener Mäusestämme (A/J und C57B1/6J) zu untersuchen. Fibroblasten wurden 2-7 Tage lang mit und ohne verschiedene Glukocorticoide kultiviert. Unter Steroiden-4-7 Tage lang — wurde die DNA-Synthese um 50–85% und die Eiweißsynthese um 50–60% gehemmt. Corticosteron verursachte in diesen Zellen eine dosisabhängige Hemmung der DNA-Synthese, wobei eine 50%-Reduzierung bei 10 nM eintrat. Spezifisches Eiweiß mit hoher Affinität und niedriger Kapazität für [3H]-Dexamethasonbzw. [3H]-Triamzinolon-Acetonid wurde im Cytoplasma von Dermalfibroblasten offenbar mit einem Kd von 9 nM und ca. 5200–6400 Bindestellen/Zelle aufgefunden. Die Sedimentationsanalyse des [3H]-Triamzinolon-Acetonid-Receptorenkomplexes wies bei niedrigen Salzglyceringefällen eine Bindung in der 7-8S-Region auf. Diese Untersuchungen weisen darauf hin, daß die Wachstumshemmung von Primärkulturen dermaler Fibroblasten neugeborener Mäuse durch Glukocorticoide wahrscheinlich auf receptoren vermitteltem Wege stattfindet und daß dieses Primärkulturensystem zur Abgrenzung anderer entzündungshemmender Wirkungen, von Glukocorticoiden in vitro nützlich sein dürfte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baxter JD, Forsham PH (1972) Tissue effects of glucocorticoids. Am J Med 53:573–589

    Google Scholar 

  2. Butley MS, Erickson RP, Pratt WB (1978) Hepatic glucocorticoid receptors and the H-2 locus. Nature 275:136–138

    Google Scholar 

  3. Cox RR, MacLeod CM (1962) Alkaline phosphatase content and effects of prednisolone on mammalian cells in culture. J Gen Physiol 45:439–485

    Google Scholar 

  4. Fodge DW, Chao WR, Johnson HL (1978) Glucocorticoid binding and [3H]thymidine incorporation into DNA in embryonic chick cell cultures. Cancer Res 38:3391–3397

    Google Scholar 

  5. Giannopoulos G (1975) Early events in the action of glucocorticoids in developing tissues. J Steroid Biochem 6:623–631

    Google Scholar 

  6. Gospodarowicz D, Moran JS (1976) Growth factors in mammalian cell culture. Ann Rev Biochem 45:531–558

    Google Scholar 

  7. Grahame R (1969) Elasticity of human skin in vitro, a study of the physical properties of the skin in rheumatoid arthritis and the effect of corticosteroids. Ann Phys Med 10:130–136

    Google Scholar 

  8. Green H, Goldberg B (1965) Synthesis of collagen by mammalian cell lines of fibroblastic and nonfibroblastic origin. Proc Natl Acad Sci (USA) 53:1360–1365

    Google Scholar 

  9. Harmon JM, Norman MR, Fowlkes BJ, Thompson EB (1979) Dexamethasone induces irreversible G 1 arrest and death of a human lymphoid cell line. J Cell Physiol 98:267–278

    Google Scholar 

  10. Harvey W, Grahame R, Panayi GS (1974) Effects of steroid hormones, on human fibroblasts in vitro. I. Glucocorticoid action of cell growth and collagen synthesis. Ann Rheum Dis 33: 437–441

    Google Scholar 

  11. Hollenberg MD (1977) Steroid-stimulated amino acid uptake in cultured human fibroblasts reflects glucocorticoid and anti-inflammatory potency. Mol Pharmacol 13:150–160

    Google Scholar 

  12. Kirby JD, Munro DD (1976) Steroid-induced atrophy in an animal and human model. Br J Dermatol 94:611–119

    Google Scholar 

  13. Kirk D, Mittwoch U (1977) Effects of topically potent glucocorticoids on human diploid fibroblasts in vitro. Br J Dermatol 97:69–75

    Google Scholar 

  14. Leung K, Munck A (1975) Peripheral actions of glucocorticoids. Ann Rev Physiol 37:245–272

    Google Scholar 

  15. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with folin phenol reagent. J Biol Chem 193:265–275

    Google Scholar 

  16. Manthorpe R, Garbasch C, Kofod B, Lorenzen I (1977) Glucocorticoid effects on vascular connective tissue during repair. Importance of dose level and pre- and post-injury treatment. Morphological and biochemical studies. Acta Endocrinol 86:437–448

    Google Scholar 

  17. Milkovic K, Milkovic S (1963) Functioning of the pituitary-adrenocortical axis in rats at and after birth. Endocrinology 73:535–539

    Google Scholar 

  18. Munck A, Leung K (1977) Glucocorticoid receptors and mechanisms of action. In: Pasqualini JR (ed) Receptors and mechanism of action of steroid hormones. Marcel Dekker, New York, p 311

    Google Scholar 

  19. Nacht S, Garzon P (1974) Effects of corticosteroids on connective tissue and fibroblasts. In: Briggs HH, Christie CA (eds) Advances in steroid biochemistry and pharmacology, vol 4. Academic Press, New York, p 157

    Google Scholar 

  20. Peters HD, Peskar BA, Schonhofer PS (1977) Glucocorticoids: Effects on prostaglandin release, cyclic AMP levels and glycosaminoglycan synthesis in fibroblast tissue cultures. Naunyn-Schmiedeberg's Arch Pharmacol 296:131–137

    Google Scholar 

  21. Ponec M, de Haas C, Bachra BN, Polano MK (1977) Effects of glucocorticosteroids on primary human skin fibroblasts. I. Inhibition of the proliferation of cultured primary human skin and mouse L929 fibroblasts. Arch Dermatol Res 259:117–123

    Google Scholar 

  22. Ponec M, Hasper I, Vianden GDNE, Bachra BN (1977) Effects of glucocorticosteroids on primary human skin fibroblasts. II. Effects on total protein and collagen biosynthesis by confluent cell cultures. Arch Dermatol Res 259:125–134

    Google Scholar 

  23. Pratt WB, Aronow L (1966) The effect of glucocorticoids, on protein, and nucleic acid synthesis in mouse fibroblasts growing in vitro. J Biol Chem 241:5244–5250

    Google Scholar 

  24. Robey PG (1979) Effect of dexamethasone on collagen metabolism in two strains of mice. Biochem Pharmacol 28:2261–2266

    Google Scholar 

  25. Rosner BA, Cristofalo VJ (1979) Hydrocortisone: A specific modulator of in vitro cell proliferation and aging. Mech Ageing Dev 9:485–496

    Google Scholar 

  26. Rowe DW, Starman BJ, Fujimoto WY, Williams RH (1977) Differences in growth response to hydrocortisone and ascorbic acid by human diploid fibroblasts. In Vitro 13:824–830

    Google Scholar 

  27. Rowe DW, Starman BJ, Fujimoto WY, Williams RH (1977) Abnormalities, in proliferation and protein synthesis in skin fibroblast cultures from patients with diabetes mellitus. Diabetes 26:284–290

    Google Scholar 

  28. Russell JD, Russell SB Trupin KM (1978) Differential effects of hydrocortisone on both growth and collagen metabolism of human fibroblasts from normal and keloid tissue. J Cell Physiol 97:221–229

    Google Scholar 

  29. Saarni H, Tammi M (1978) Time and concentration dependence of the action of corticol on fibroblasts in vitro. Biochim Biophys Acta 540:117–126

    Google Scholar 

  30. Salomon DS, Pratt RM (1978) Inhibition of growth in vitro by glucocorticoids in mouse embryonic facial mesenchyme cells. J Cell Physiol 97:315–327

    Google Scholar 

  31. Salomon DS, Zubairi Y, Thompson EB (1978) Ontogeny and biochemical properties of glycocorticoid receptors in mid-gestation mouse embryos. J Steroid Biochem 9:95–107

    Google Scholar 

  32. Salomon DS, Vistica, DT (1979) Steroid receptors and steroid response in cultured L 1210 murine leukemia cells. Mol Cell Endocrinol 13:55–71

    Google Scholar 

  33. Scatchard G (1949) The attraction of proteins for small molecules and ions. Ann NY Acad Sci 51:660–672

    Google Scholar 

  34. Seifert R, Hilz H (1966) Selective and reversible inhibition of proliferation and influence on metabolic functions in L cells by low cortisol concentrations. Acta Endocrinol 53:189–204

    Google Scholar 

  35. Setaro F, Morley CCD (1976) A modified fluorimetric method for the determination of microgram quantities of DNA from cell or tissue cultures. Anal Biochem 71:313–317

    Google Scholar 

  36. Solomon S, Lee DKH (1977) Binding of glucocorticoids in fetal tissues. J Steroid Biochem 8:453–467

    Google Scholar 

  37. Thompson EB, Lippman ME (1974) Mechanism of action of glucocorticoids. Metabolism 23:159–202

    Google Scholar 

  38. Trash CR, Ho TS, Cunningham DD (1974) Structural features of steroids which initiate proliferation of density-inhibited 3 T3 mouse fibroblasts. J Biol Chem 249:6099–6103

    Google Scholar 

  39. West HF (1961) Corticosteroid bruising. Ann Rheum Dis 20:86–88

    Google Scholar 

  40. Yuspa SH, Harris CC (1974) Altered differentiation of mouse epidermal cells treated with retinyl acetate in vitro. Exp Cell Res 86:95–105

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This investigation was supported in part by a Public Health Service International Research Fellowship (FO-5-TWO 2236) to LAV

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verbruggen, L.A., Salomon, D.S. Glucocorticoid receptors and inhibition of neonatal mouse dermal fibroblast growth in primary culture. Arch Dermatol Res 269, 111–126 (1980). https://doi.org/10.1007/BF00406531

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00406531

Key words

Schlüsselwörter

Navigation