Skip to main content
Log in

Adenine nucleotide metabolism in Azotobacter vinelandii. Two metabolic pathways of AMP degradation

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

AMP-degrading pathways in Azotobacter vinelandii cells were investigated. AMP nucleosidase (EC 3.2.2.4) was rapidly synthesized and reached a maximum at 24 h, while the activity of 5′-nucleotidase (EC 3.1.3.5) specific for AMP, which was negligible during the logarithmic phase of the growth, first appeared in 24 h-cultures, and reached a maximum after complete exhaustion of sucrose from the growth medium (70 h).

Cell-free extracts of A. vinelandii of 48 h-cultures hydrolyzed AMP to ribose 5-phosphate and adenine in the presence of ATP, and adenine was deaminated to hypoxanthine. When ATP was excluded, AMP was dephosphorylated to adenosine, which was further metabolized to inosine, and finally to hypoxanthine. Hypoxanthine thus formed was reutilized for the salvage synthesis of IMP under the conditions where 5-phosphoribosyl 1-pyrophosphate was able to be supplied. These results suggest that the levels of ATP can determine the rate of AMP degradation by the AMP nucleosidase- and 5′-nucleotidase-pathways. The role of ATP in the AMP degradation was discussed in relation to the regulatory properties of AMP nucleosidase, inosine nucleosidase (EC 3.2.2.2) and adenosine deaminase (EC 3.5.4.4).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashwell, G.: Colorimetric analysis of sugars. In: Methods in enzymology, Vol. 3, (Colowick, S. P. and Kaplan, N. O., eds.), pp. 73–105. New York: Academic Press 1957

    Google Scholar 

  • Atkinson, D. E.: Cellular energy metabolism and its regulation. New York: Academic Press 1977

    Google Scholar 

  • Chaney, A. L., Marbach, E. P.: Modified reagents for determination of urea and ammonia. Clin. Chem. 8, 130–132 (1962)

    PubMed  Google Scholar 

  • Chapman, A. G., Atkinson, D. E.: Stabilization of adenylate energy charge by the adenylate deaminase reaction. J. Biol. Chem. 248, 8309–8312 (1973)

    PubMed  Google Scholar 

  • Chen, P. S., Jr., Toribara, T. Y.: Microdetermination of phosphorus. Anal. Chem. 28, 1756–1758 (1956)

    Google Scholar 

  • Cowsert, M. K., Jr., Carrier, O., Jr., Crowell, J. W.: The effect of hemorrhagic shock on blood uric acid level. Canad. J. Physiol. Pharmacol. 44, 861–864 (1966)

    Google Scholar 

  • Crowell, J. W., Jones, C. E., Smith, E. E.: Effect of allopurinol on hemorrhagic shock. Am. J. Physiol. 216, 744–748 (1969)

    PubMed  Google Scholar 

  • Dawson, R. M. C., Elliot, D. C., Elliot, W. H., Jones, K. M. (eds.): Data for biochemical research. Oxford: Clarendon Press 1969

    Google Scholar 

  • Dygert, S., Li, L. H., Florida, D., Thoma, J. A.: Determination of reducing sugar with improved precision. Anal. Biochem. 13, 367–374 (1965)

    PubMed  Google Scholar 

  • Frick, G. P., Lowentein, J. M.: Vectoral production of adenosine by 5′-nucleotidase in perfused rat heart. J. Biol. Chem. 253, 1240–1244 (1978)

    PubMed  Google Scholar 

  • Heppel, L. A., Hurwitz, J., Horecker, B. L.: Adenine deaminase of Azotobacter vinelandii. J. Am. Chem. Soc. 79, 630–633 (1957)

    Google Scholar 

  • Kohn, M. C., Garfinkel, D.: Computer simulation of ischemic rat heart metabolism. I. Model construction. Am. J. Physiol. 232, 386–393 (1977a)

    Google Scholar 

  • Kohn, M. C., Garfinkel, D.: Computer simulation of ischemic rat heart metabolism. II. Model behavior. Am. J. Physiol. 232, 394–399 (1977b)

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with Folin-phenol reagent. J. Biol. Chem. 193, 265–272 (1951)

    PubMed  Google Scholar 

  • Murakami, K., Yoshino, M.: Ion-dependent activation of AMP nucleosidase from Azotobacter vinelandii. Biochim. Biophys. Acta 613, 153–159 (1980)

    PubMed  Google Scholar 

  • Schramm, V. L., Leung, H.: Regulation of adenosine monophosphate levels as a function of adenosine triphosphate and inorganic phosphate. A proposed metabolic role of adenosine monophosphate nucleosidase from Azotobacter vinelandii. J. Biol. Chem. 248, 8313–8315 (1973)

    PubMed  Google Scholar 

  • Schramm, V. L., Lazorik, F. C.: The pathway of adenylate catabolism in Azotobacter vinelandii. Evidence for adenosine monophosphate nucleosidase as the regulating enzyme. J. Biol. Chem. 250, 1801–1808 (1975)

    PubMed  Google Scholar 

  • Swissa, M., Weinhouse, H., Benziman, M.: Activities of citrate synthase and other enzymes of Acetobacter xylinum in situ and in vitro. Biochem. J., 153, 499–501 (1976)

    PubMed  Google Scholar 

  • Tsukada, T., Yoshino, M.: Adenosone deaminase form Azotobacter vinelandii. Purification and Properties. Arch. Microbiol. 128, 228–232 (1980)

    PubMed  Google Scholar 

  • Woods, H. F., Eggleston, L. K., Krebs, H. A.: The cause of hepatic accumulation of fructose 1-phosphate in fructose loading. Biochem. J. 119, 501–510 (1970)

    PubMed  Google Scholar 

  • Yoshino, M., Ogasawara, N., Suzuki, N., Kotake, Y.: Regulation of AMP nucleosidase in Azotobacter vinelandii. Biochim. Biophys. Acta 146, 620–622 (1967)

    PubMed  Google Scholar 

  • Yoshino, M.: AMP nucleosidase from Azotobacter vinelandii. I. Purification and properties. J. Biochem. 68, 321–329 (1970)

    PubMed  Google Scholar 

  • Yoshino, M., Ogasawara, N.: AMP nucleosidase from Azotobacter vinelandii. III. Kinetics of allosteric interactions. J. Biochem. 72, 223–233 (1972)

    PubMed  Google Scholar 

  • Yoshino, M., Kawamura, Y., Ogasawara, N.: Regulation of AMP deaminase from chicken erythrocytes. A kinetic study of the allosteric interactions. J. Biochem. 80, 299–308 (1976)

    PubMed  Google Scholar 

  • Yoshino, M., Murakami, K., Tsushima, K.: The role of polyamines in the regulation of AMP deaminase isozymes. Biochim. Biophys. Acta 542, 177–179 (1978a)

    PubMed  Google Scholar 

  • Yoshino, M., Tsukada, T., Tsushima, K.: Inosine nucleosidase from Azotobacter vinelandii. Purification and properties. Arch. Microbiol. 119, 59–64 (1978b)

    PubMed  Google Scholar 

  • Yoshino, M., Murakami, K., Tsushima, K.: Polyamines as activators of AMP nucleosidase from Azotobacter vinelandii. Experientia 35, 578–579 (1979a)

    PubMed  Google Scholar 

  • Yoshino, M., Murakami, K., Tsushima, K.: Effect of monovalent cations on AMP nucleosidase from Azotobacter vinelandii. Biochim. Biophys. Acta 570, 118–123 (1979b)

    PubMed  Google Scholar 

  • Yoshino, M., Murakami, K., Tsushima, K.: AMP deaminase from baker's yeast. Purification and some regulatory properties. Biochim. Biophys. Acta 570, 157–166 (1979c)

    PubMed  Google Scholar 

  • Zielke, C. L., Suelter, C. H.: Purine purine nucleoside, and purine nucleotide aminohydrolases. In: The Enzymes, Vol. 4, 3rd edn. (Boyer, P. D., ed.), pp. 47–78. New York: Academic Press 1971

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshino, M., Tsukada, T., Murakami, K. et al. Adenine nucleotide metabolism in Azotobacter vinelandii. Two metabolic pathways of AMP degradation. Arch. Microbiol. 128, 222–227 (1980). https://doi.org/10.1007/BF00406162

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00406162

Key words

Navigation