Skip to main content
Log in

Analysis of the physiological effects of the antibiotic streptozotocin on Escherichia coli K 12 and other sensitive bacteria

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The antibiotic streptozotocin under a variety of growth conditions rapidly and irreversibly inactivates the capacity to divide or to form colonies of a series of sensitive bacteria, containing the phosphoenolpyruvate-dependent sugar-phosphotransferase system. Cells can be sensitized towards the drug by pregrowth in N-acetyl-glucosamine and can be protected by adding this amino-glucoside to the medium. Starvation for energy, especially for phosphoenolpyruvate, or prevention of the induction of a transport system involved in streptozotocin uptake will protect the cells, while a block in protein synthesis does not. The killed cells neither lyse, nor are they transformed into spheroplasts. At first, the capacity of such “dead” cells to respire, to swim actively or to keep the cytoplasmic membrane impermeable for small molecules remains intact. Their capacity for over-all RNA and protein synthesis, and for carbohydrate and amino acid uptake by facilitated diffusion or active transport is not affected. However, they loose rapidly their ability to take up carbohydrates by the phospheonolpyruvate dependent process of group translocation or to synthesize inducible enzymes, e.g. the enzyme β-galactosidase. These inhibitory effects apparently are caused by the accumulation of phosphorylated, toxic derivates of the antibiotic and eventually lead to a pronounced bacteriostasis. Killing of the cells seems to be caused by a direct effect of the strongly mutagenic drug on replicating DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

IPTG:

isopropyl-β-D-thiogalactopyranoside

MIC:

minimal inhibitory concentration

NAG:

N-acetyl-D-glucosamine

oNP:

ortho-nitrophenolat

oNPG:

o-nitrophenyl-β-D-galactopyranoside

PEP:

phosphoenolpyruvate

PTS:

phosphoenolpyruvate dependent sugar: phosphotransferase system

Stz:

streptozotocin

TCA:

trichloroacetic acid

References

  • Ammer, J., Brennenstuhl, M., Schindler, P., Höltje, J.-V., Zähner, H.: Phosphorylation of streptozotocin during uptake via the phosphoenolpyruvate sugar phosphotransferase system in E. coli. Antimicrob. Agents Chemother. 16, 801–807 (1979)

    PubMed  Google Scholar 

  • Bachmann, B. J., Low, K. B., Taylor, A. L.: Recalibrated linkage map of Escherichia coli K 12. Bact. Rev. 40, 116–167 (1976)

    PubMed  Google Scholar 

  • Clark, A. J., Chamberlin, M., Boyce, R. P., Howard-Flanders, P.: Abnormal metabolic response to ultraviolet light of a recombinant deficient mutant of Escherichia coli K 12. J. Molec. Biol. 19, 442–454 (1966)

    PubMed  Google Scholar 

  • Cohen, G. N., Monod, J.: Bacterial permeases. Bacteriol. Rev. 21, 169–194 (1957)

    PubMed  Google Scholar 

  • Gichner, T., Veleminsky, J., Krepinsky, J.: Strong mutagenic activity of streptozotocin — an antibiotic with an alkylnitroso group. Molec. Gen. Genet. 102, 184–186 (1968)

    PubMed  Google Scholar 

  • Guerola, N., Ingraham, J. L., Cerda-Olmedo, E.: Induction of closely linked multiple mutations by nitrosoguanidine. Nature 230, 122–125 (1971)

    PubMed  Google Scholar 

  • Hanka, L. J., Sokolski, W. T.: Bacterial resistance to streptozotocin. Antibiot. Annu. 1959–1960, 255–261 (1960)

    Google Scholar 

  • Heinemann, B., Howard, A. J.: Induction of lambda-bacteriophage in Escherichia coli as a screening test for potential antitumor agents. Appl. Microbiol. 12, 234–239 (1964)

    PubMed  Google Scholar 

  • Herr, R. R., Eble, T. E., Bergy, M. E., Jahnke, H. K.: Isolation and characterization of streptozotocin. Antibiot. Annu. 1959–1960, 236–240 (1960)

    Google Scholar 

  • Kent, P. W., Ackers, J. P., White, R. J.: N-iodoacetyl-D-glucosamine, an inhibitor of growth and glucoside uptake in Escherichia coli. Biochem. J. 118, 73–79 (1970)

    PubMed  Google Scholar 

  • Klein, W. L., Boyer, P. D.: Energization of active transport by Escherichia coli. J. Biol. Chem. 247, 7257–7265 (1972)

    PubMed  Google Scholar 

  • Larsen, S. H., Adler, J., Garguss, J. J., Hogg, R. W.: Chemomechanical coupling without ATP: the source of energy for motility and chemotaxis in bacteria. Proc. Natl. Acad. Sci. USA 71, 1239–1243 (1974)

    PubMed  Google Scholar 

  • Lengeler, J.: Untersuchungen zum Glukose Effekt bei der Synthese der Galaktose-Enzyme von Escherichia coli. Z. Vererbungsl. 98, 203–229 (1966)

    PubMed  Google Scholar 

  • Lengeler, J.: Mutations affecting transport of the hexitols D-mannitol, D-glucitol, and galactitol in Escherichia coli K 12 isolation and mapping. J. Bacteriol. 124, 26–38 (1975)

    PubMed  Google Scholar 

  • Lengeler, J.: Streptozotocin, an antibiotic superior to penicillin in the selection of rare bacterial mutations. FEMS Microbiol. Lett. 5, 417–419 (1979)

    Google Scholar 

  • Lengeler, J.: Characterization of mutants of Escherichia coli K 12, selected by resistance to streptozotocin. Molec. Gen. Genet. (in press, 1980)

  • Lengeler, J., Steinberger, H.: Analysis of regulatory mechanisms controlling the activity of the hexitol transport systems in Escherichia coli K 12. Molec. Gen. Genet. 167, 75–82 (1978)

    PubMed  Google Scholar 

  • Lewis, C., Barbiers, A. B.: Streptozotocin, a new antibiotic. In vitro and in vivo evaluation. Antibiot. Annu. 1959–1960, 247–254 (1960)

    Google Scholar 

  • Reusser, F.: Mode of action of streptozotocin. J. Bacteriol. 105, 580–588 (1971)

    PubMed  Google Scholar 

  • Romano, A. H., Trifone, J. D., Brustolon, M.: Distribution of the phosphoenolpyruvate: Glucose phosphotransferase system in fermentative bacteria. J. Bacteriol. 139, 93–97 (1979)

    PubMed  Google Scholar 

  • Ruch, F. E., Lengeler, J., Lin, E. C. C.: Regulation of glycerol catabolism in Klebsiella aerogenes. J. Bacteriol. 119, 50–56 (1974)

    PubMed  Google Scholar 

  • Sokolski, W. T., Vavra, J. J., Hanka, L. J.: Assay methods and antibacterial studies on streptozotocin. Antibiot. Annu. 1959–1960, 241–246 (1960)

    Google Scholar 

  • Vavra, J. J., DeBoer, C., Dietz, A., Hanka, L. J., Sokolski, W. T.: Streptozotocin, a new antibacterial antibiotic. Antibiot. Annu. 1959–1960, 230–235 (1960)

    Google Scholar 

  • Wiley, P. F., Herr, R. R., Jahnke, H. K., Chidester, C. G., Mizsak, S. A., Spaulding, L. B., Argoudelis, A. D.: Streptozocin: structure and chemistry. J. Organ. Chem. 44, 9–16 (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lengeler, J. Analysis of the physiological effects of the antibiotic streptozotocin on Escherichia coli K 12 and other sensitive bacteria. Arch. Microbiol. 128, 196–203 (1980). https://doi.org/10.1007/BF00406158

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00406158

Key words

Navigation