Advertisement

Archives of Microbiology

, Volume 118, Issue 1, pp 13–20 | Cite as

Electron-transport chain and coupled oxidative phosphorylation in methanol-grown Paracoccus denitrificans

  • H. W. Van Verseveld
  • A. H. Stouthamer
Article

Abstract

Methanol dehydrogenase of Paracoccus denitrificans was shown to be very similar to the enzyme of Pseudomonas sp, M. 27. The Km value for methanol with excess activator (ammonium ions) is 35 μM. The pH optimum for enzyme activity with 2,6-dichlorophe-nolindophenol as electronacceptor was at 9.0 A CO-binding type of cytochrome c was present only in cells grown with methanol as carbon and energy source.

It has been shown that methanol-oxidation involves electron-transport via cytochrome c and an a-type cytochrome to oxygen. Antimycin A did not inhibit this electron transport and 90% inhibition was obtained by 375 μM potassium cyanide. Electron transport from endogenous substrates is possible via cytochrome b and possibly cytochrome o to oxygen. Potassium cyanide inhibited 90% of the electron transport via this pathway at a concentration of 1.42 mM. Measurement of respiration-driven proton translocation proved that during oxidation of methanol to formaldehyde by oxygen one mole of adenosine triphosphate is synthesized in the site 3 region of the electron transport chain. The → H+/O value found confirmed the → H+/site ratio of 3–4 found in heterotrophic grown cells. During electron transport from endogenous substrates to oxygen there is a possible synthesis of 3 moles of adenosine triphosphate.

In heterotrophically grown cells electron transfer to oxygen follows almost only the branch of the respiratory chain containing cytochrome o. In methanol-grown cells the pathway via the a-type cytochrome seems more important.

Key words

Methanol dehydrogenase Autotrophic growth Electron transport chain Oxidative phosphorylation Proton translocation Paracoccus denitrificans 

Abbreviations

DCPIP

2,6-dichlorophenolindophenol

PMS

phenazine methosulphate

EPR

electron paramagnetic resonance

S.D.

standard deviation

ATP

adenosine triphosphate

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anthony, C.: The microbial metabolism of C1 compounds. The cytochromes of Pseudomonas AM1. Biochem. J. 146, 289–298 (1975)PubMedGoogle Scholar
  2. Anthony, C., Zatman, L. J.: The microbial oxidation of methanol. 2. The methanol-oxidizing enzyme of Pseudomonas sp. M27. Biochem. J. 92, 614–621 (1964)PubMedGoogle Scholar
  3. Anthony, C., Zatman, L. J.: The microbial oxidation of methanol. The prosthetic group of the alcohol dehydrogenase of Pseudomonas sp. M27. A new oxido reductase prosthetic group. Biochem. J. 104, 960–969 (1967)PubMedGoogle Scholar
  4. Brand, M. D., Ho Chen, C., Lehninger, A. L.: Stoichiometry of H+ ejection during respiration-dependent accumulation of Ca2+ by rat liver mitochondria. J. Biol. Chem. 251, 968–974 (1976a)PubMedGoogle Scholar
  5. Brand, M. D., Reynafarje, B., Lehninger, A. L.: Stoichiometric relationship between energy-dependent proton ejection and electron transport in mitochondria. Proc. nat. Acad. Sci. (Wash.) 73, 437–441 (1976b)Google Scholar
  6. Chang, J. P., Morris, J. G.: Studies on the utilisation of nitrate by Micrococcus denitrificans. J. Gen. Microbiol. 29, 301–310 (1962)PubMedGoogle Scholar
  7. Cox, R. B., Quayle, J. R.: The autotrophic growth of Micrococcus denitrificans on methanol. Biochem. J. 150, 569–571 (1975)PubMedGoogle Scholar
  8. Davis, D. H., Doudoroff, M., Stanier, R. Y.: Proposal to reject the genus Hydrogenomas: taxonomic implications. Int. J. Syst. Bact. 19, 375–390 (1969)Google Scholar
  9. Edwards, C., Spode, J. A., Jones, C. W.: The growth of Paracoccus denitrificans. FEBS Lett. 1, 67–70 (1977)Google Scholar
  10. Higgins, I. J., Knowles, C. J., Tonge, G. M.: Enzymic mechanisms of methane and methanol oxidation in relation to electron transport systems in methylotrophs; purification and properties of methane oxygenase. In: Microbial production and utilization of gases. (H. G. Schlegel, G. Gottschalk, N. Pfennig, eds.), pp. 389–402. Göttingen: Goltze-Druck 1976Google Scholar
  11. John, P., Whatley, F. R.: Oxidative phosphorylation coupled to oxygen uptake and nitrate reduction in Micrococcus denitrificans. Biochim. Biophys. Acta (Amst.) 216, 342–352 (1970)Google Scholar
  12. John, P., Whatley, F. R.: Paracoccus denitrificans and the evolutionary origin of the mitochondrion. Nature (Lond.) 254, 495–498 (1975)Google Scholar
  13. John, P., Whatley, F. R.: The bioenergetics of Paracoccus denitrificans. Biochim. Biophys. Acta (Amst.) 463, 129–153 (1977)Google Scholar
  14. Jones, C. W., Brice, J. M., Edwards, C.: The effect of respiratory chain composition on the growth efficiency of aerobic bacteria. Arch. Microbiol. 115, 85–93 (1977)PubMedGoogle Scholar
  15. Knobloch, K., Ishaque, M., Aleem, M. I. H.: Oxidative phosphorylation in Micrococcus denitrificans under autotrophic growth conditions. Arch. Mikrobiol. 76, 114–124 (1971)PubMedGoogle Scholar
  16. Lawford, H. G.: Efficiency of energy conservation in Paracoccus denitrificans during carbon or sulphate-limited growth. Proc. Soc. Gen. Microbiol. 4, 71 (1977)Google Scholar
  17. Lawford, H. G.: Energy-transduction in the mitochondrial-like bacterium Paracoccus denitrificans during carbon- or sulphatelimited aerobic growth in continuous culture. Can. J. Biochem. (in press)Google Scholar
  18. Lawford, H. G., Cox, J. C., Garland, P. B., Haddock, B. A.: Electron transport in aerobically grown Paracoccus denitrificans: kinetic characterization of the membrane-bound cytochromes and the stoichiometry of respiration-driven proton translocation. FEBS Lett. 64, 369–374 (1976)PubMedGoogle Scholar
  19. Meijer, E. M., van Verseveld, H. W., van der Beek, E. G., Stouthamer, A. H.: Energy conservation during aerobic growth in Paracoccus denitrificans. Arch. Microbiol. 112, 25–34 (1977a)PubMedGoogle Scholar
  20. Meijer, E. M., Wever, R., Stouthamer, A. H.: The role of iron-sulfur center 2 in electron transport and energy conservation in the NADH-ubiquinone segment of the respiratory chain in Paracoccus denitrificans. Eur. J. Biochem. 81, 267–275 (1977b)PubMedGoogle Scholar
  21. Mitchell, P.: Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Nature (Lond.) 191, 144–148 (1961)Google Scholar
  22. Mitchell, P., Moyle, J.: Respiration driven proton translocation in rat liver mitochondria. Biochem. J. 105, 1147–1162 (1967)Google Scholar
  23. Netrusov, A. I., Rodionov, Y. V., Kondratieva, E. N.: ATP-generation coupled with C1-compound oxidation by methylotrophic bacterium Pseudomonas sp. 2. FEBS Lett. 76, 56–58 (1977)PubMedGoogle Scholar
  24. Stouthamer, A. H., Bettenhaussen, C. W.: Determination of the efficiency of oxidative phosphorylation in continuous cultures of Aerobacter aerogenes. Arch. Microbiol. 102, 187–192 (1975)PubMedGoogle Scholar
  25. Tonge, G. M., Drozd, J. W., Higgins, I. J.: Energy coupling in Methylosinus trichosporium. J. Gen. Microbiol. 99, 229–232 (1977)Google Scholar
  26. Tonge, G. M., Knowles, C. J., Harrison, D. E. F., Higgins, I. J.: Metabolism of one carbon compounds: cytochromes of methane-and methanol-utilising bacteria. FEBS Lett. 44 106–110 (1974)PubMedGoogle Scholar
  27. Van Verseveld, H. W., Meijer, E. M., Stouthamer, A. H.: Energy conservation during nitrate respiration in Paracoccus denitrificans. Arch. Microbiol. 112, 17–23 (1977)PubMedGoogle Scholar
  28. Van Verseveld, H. W., Stouthamer, A. H.: Oxidative phosphorylation in Micrococcus denitrificans. Calculation of the P/O ratio in growing cells. Arch. Microbiol. 107, 241–247 (1976)PubMedGoogle Scholar
  29. Van Verseveld, H. W., Stouthamer, A. H.: Growth yields and the efficiency of oxidative phosphorylation during autotrophic growth of Paracoccus denitrificans on methanol and formate. Arch. Microbiol. 118, 21–26 (1978)PubMedGoogle Scholar
  30. Widdowson, D., Anthony, C.: The microbial metabolism of C1 compounds. The electron-transport chain of Pseudomonas AM1. Biochem. J. 152, 349–356 (1975)PubMedGoogle Scholar
  31. Wikström, M. K. F.: Proton pump coupled to cytochrome c oxidase in mitochondria. Nature (Lond.) 266, 271–273 (1977)Google Scholar
  32. Wikström, M. K. F., Saari, H. T.: The mechanism of energy conservation and transduction by mitochondrial cytochrome c oxidase. Biochim. Biophys. Acta (Amst.) 462, 347–361 (1977)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • H. W. Van Verseveld
    • 1
  • A. H. Stouthamer
    • 1
  1. 1.Department of Microbiology, Biological LaboratoryFree UniversityAmsterdamThe Netherlands

Personalised recommendations