Archives of Microbiology

, Volume 131, Issue 3, pp 287–290 | Cite as

The close phylogenetic relationship of Nitrobacter and Rhodopseudomonas palustris

  • Elke Seewaldt
  • Karl-Heinz Schleifer
  • Eberhard Bock
  • Erko Stackebrandt
Short Communication


The phylogenetic position of Nitrobacter winogradskyi and two other nitrite-oxidizing bacteria was elucidated comparing oligonucleotides of the 16S ribosomal RNA. Nitrobacter winogradskyi and the Nitrobacter isolate ‘Yukatan’ are genetically nearly identical; Nitrobacter isolate X14 is more distantly related. Phylogenetically, Nitrobacter is a member of a group of purple non-sulfur bacteria that is defined by various species of Rhodopseudomonas, Rhodomicrobium vannielii, Rhodospirillum rubum and their non-phototrophic relatives. Nitrobacter shares a high sequence similarity to Rhodopseudomonas palustris. These findings are in accord with several common taxonomic characteristics, and in addition support the conversion hypothesis for the origin of this group of chemolithotrophic bacteria.

Key words

Nitrobacter winogradskyi Rhodopseudomonas palustris Chemolithotrophy Phylogeny 16S ribosomal catalogues 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ambler RP, Daniel M, Hermoso I, Meyer T, Bartsch RG, Kamen MD (1979) Cytocrome C2 sequence variation among the recognized species of purple non-sulfur photosynthetic bacteria. Nature 278: 659–660Google Scholar
  2. Bock E (1970) Untersuchungen über die Wechselwirkung zwischen Licht und Chemosynthese am Beispiel von Nitrobacter winogradskyi. Arch Mikrobiol 70:217–239Google Scholar
  3. Bonen L, Doolittle WF, Fox GE (1979) Cyanobacterial evolution: results of 16 S ribosomol ribonucleic acid sequence analyses. Can J Biochem 57:879–888Google Scholar
  4. Broda E (1970) The evolution of bioenergetic processes. Prog Biophys Molec Biol 21:145–208Google Scholar
  5. Broda E (1971) The origins of bacterial respiration. In: R Buvet C Ponnamperuma (eds) Chemical evolution and the origin of life. North-Holland Publ Comp, Amsterdam, pp 446–452Google Scholar
  6. Broda E (1978) The evolution of the bioenergetic processes. Pergamon Press. Oxford New York, pp 93–106Google Scholar
  7. Dickerson RE (1980) Evolution and gene transfer in purple photosynthetic bacteria. Nature 283:210–212Google Scholar
  8. Fox GE, Stackebrandt E, Hespell RB, Gibson J, Maniloff I, Dyer TA, Wolfe RS, Balch WE, Tanner RS, Magrum LJ, Zablen LB, Blackemore R, Gupta R, Bonen L, Lewis BJ, Stahl DA, Luehrsen KR, Chen KN, Woese CR (1980) The phylogeny of Prokaryotes. Science 209:457–463Google Scholar
  9. Gaffron H (1965) The role of light in evolution: Transition from a one quantum to a two quanta mechanism. In: SW Fox (ed) The origins of prebiological systems and their molecular matrices. Academic Press, New York, pp 437–460Google Scholar
  10. Gibson J, Stackebrandt E, Zablen LB, Gupta R, Woese CR (1980) A phylogenetic analysis of the purple photosynthetic bacteria. Curr Microbiol 3:59–64Google Scholar
  11. Hori H, Osawa S (1979) Evolutionary change in 5 S RNA secondary structure and a phylogenetic tree of 54 5S RNA species. Proc Natl Acad Sci USA 76:381–385Google Scholar
  12. Margulis L (1968) Evolutionary criteria in thallophytes: A radical alternative. Science 161:1020–1022Google Scholar
  13. Margulis L (1970) Origin of eukaryotic cells. Yale University Press, New HavenGoogle Scholar
  14. Olson JM (1970) The evolution of photosynthesis. Science 168:438–446Google Scholar
  15. Pfennig N, Trüper HG (1974) The phototrophic bacteria. In: RE Buchanan, NE Gibbons (eds) Bergey's manual of determinative bacteriology, 8th edn. Williams & Wikins. Baltimore, pp 29–33Google Scholar
  16. Sagan L (1967) On the origin of mitosing cells. J Theoret Biol 14:225–274Google Scholar
  17. Schwartz RM, Dayhoff MO (1978) Origins of prokaryotes, mitochondria, and chloroplasts. Science 199:395–403Google Scholar
  18. Schwemmler W (1979) Mechanismen der Zellevolution. Walter de Gruyter. Berlin New York, pp 115–154Google Scholar
  19. Stackebrandt E, Woese CR (1981) The evolution of prokaryotes. In: MI Carlile, IF Collins, BEB Moseley (eds) Molecular and cellular aspects of microbial evolution. Cambridge University Press, pp 1–32Google Scholar
  20. Stackebrandt E, Ludwig W, Schleifer KH, Gross HJ (1981) Rapid cataloging of ribonuclease T1 resistant oligonucleotides from ribosomal RNAs for phylogenetic studies. J Mol Evol 17:227–236Google Scholar
  21. Uchida T, Bonen L, Schaup HW, Lewis BJ, Zablen I, Woese CR (1974) The use of ribonuclease U2 in RNA sequence determination: some corrections in the catalogue of oligomers produced by ribonuclease T1 digestion of Escherichia coli 16S ribosomal RNA. J Mol Evol 1:173–184Google Scholar
  22. Watson SW (1974) Nitrobacteriaceae. In: RE Buchanan, NE Gibbons (eds) Bergey's manual of determinative bacteriology, 8th edn. Williams & Wilkins, Baltimore, pp 450–546Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Elke Seewaldt
    • 1
  • Karl-Heinz Schleifer
    • 1
  • Eberhard Bock
    • 2
  • Erko Stackebrandt
    • 1
  1. 1.Lehrstuhl für MikrobiologieTechnische Universität MünchenMünchen 2Federal Republic of Germany
  2. 2.Institut für Botanik und MikrobiologieUniversität HamburgHamburgFederal Republic of Germany

Personalised recommendations