Skip to main content
Log in

Alkylsulfonic acids and some S-containing detergents as sulfur sources for growth of Chlorella fusca

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Chlorella fusca can utilize the following substances as sole sulfur sources for growth: C1 to C8 n-alkane-1-sulfonates, linear alkylbenzenes sulfonates (LAS), α-sulfonated fatty acid esters, polyethylene glycol sulfate and alkylsulfates. Good sulfur sources are alkylsulfonic acids, which are comparable to sulfate. Ethanesulfonic acid was used for comparison of the growth on sulfate and on a sulfonic acid, because best growth was achieved on this C2-sulfonic acid.

Growth data of Chlorella on the enviromental important detergents linear alkylbenzene sulfonic acids, α-sulfonated fatty acid methylester, Texapon and Sulfopon are presented. So far only microorganisms have been discussed as a source for degradation of sulfonic acids and detergents. It is suggested that green algae could be of similar importance for the biodegradation of these compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

LAS:

Linear alkylbenzene sulfonate

ES:

α-sulfonated fatty acid methylester

DTE:

dithiocrythritol

References

  • Anderson R, Kates M, Volcani RL (1978) Identification of the sulfolipids in the non-photosynthetic diatom Nitschia alba. Biochim Biophys Acta 528:89–109

    PubMed  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Google Scholar 

  • Banwart WL, Bremner JM (1975) Formation of volatile sulfur compounds by microbial decomposition of sulfur-containing amino acids in soils. Soil Biol Biochem 7:359–364

    Article  Google Scholar 

  • Billheimer EC, Reid EE (1930) The decomposition of mercaptans in alkali solutions. J Am Chem Soc 52:4338–4344

    Google Scholar 

  • Bonsen PPM, Spudich JA, Nelson DL, Kornberg A (1969) Biochemical studies of bacterial sporulation and germination. XII. A sulfonic acid as a major sulfur compound of Bacillus subtilis spores. J Bacteriol 98:62–68

    PubMed  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgramm quantities of protein utilizing the principles of protein dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Busby WF (1966) Sulfopropanediol and cysteinolic acid in the diatom. Biochim Biophys Acta 121:160–161

    PubMed  Google Scholar 

  • Cain RB, Farr DR (1968) Metabolism of arylsulfonates by microorganism. Biochem J 106:859–877

    PubMed  Google Scholar 

  • Cook AM, Hütter R (1982) Ametryne and prometryne as sulfur sources for bacteria. Appl Environ Microbiol 43:781–786

    Google Scholar 

  • Daughton CG, Cook AM, Alexander M (1979) Biodegradation of phosphonate toxicants yields methane or ethane on cleavage the C−P bond. FEMS Microbiol Lett 5:91–93

    Article  Google Scholar 

  • Endo K, Kondo H, Ishimoto M (1977) Degradation of benzene sulfonate to sulfite in bacterial extracts. J Biochem 82:1397–1402

    PubMed  Google Scholar 

  • Godchaux III W, Leadbetter EL (1980) Capnocytophage spp. contain sulfonolipids that are novel in procaryotes. J Bacteriol 44:592–602

    Google Scholar 

  • Harwood JL, Nicholls RG (1979) The plant sulfolipid — a major component of the sulfur cycle. Biochem Rev 7:440–447

    Google Scholar 

  • Hatakeyama S, Okuda M, Akimoto H (1982) Formation of sulfur dioxide and methanesulfonic acid in the photooxidation of dimethyl sulfide in the air. Geophys Res Lett 9:583–586

    Google Scholar 

  • Henkel K (1976) Waschmittelchemie. Dr. A. Hütig Verlag, Heidelberg

    Google Scholar 

  • Janicke W, Niemitz W (1973) Vergleichende Versuche mit Waschrohstoff und konfektioniertem Waschmittel bei der biologischen Abwasserbehandlung. Vom Wasser 40:369–389

    Google Scholar 

  • Johnston JB, Murray K, Cain RB (1975) Microbial metabolism of aryl sulfonates. A re-assessment of colorimetric methods for the determination of sulfite and their use in measuring desulfonation or aryl and alkylbenzene sulfonates. J Microbiol Serol 41:493–511

    Google Scholar 

  • Jüttner F, Wiedemann E, Wurster K (1982) Excretion of S- and O-methylesters and other volatile compounds by Ochromonas danica. Phytochem 21:2185–2188

    Article  Google Scholar 

  • Kadota H, Ishida Y (1972) Production of volatile sulfur compounds by microorganism. Ann Rev Microbiol 26:127–138

    Article  Google Scholar 

  • Kharasch N, Arora AS (1976) Chemistry of biologically active sulfur compounds. Phosphorus and Sulfur 2:1–50

    Google Scholar 

  • Kondo H, Ishimoto M (1972) Enzymatic formation of sulfite and acetate from sulfoacetaldehyde, a degradation product of taurine. J Biochem 72:487–489

    PubMed  Google Scholar 

  • Kondo H, Ishimoto M (1975) Purification and properties of sulfoacetaldehyde sulfo-lyase, a thiamine pyrophosphate-dependent enzyme forming sulfite and acetate. J Biochem 78:317–325

    PubMed  Google Scholar 

  • Larson RJ, Pane AG (1981) Fate of the benzene ring of linear alkylbenzene sulfonate in natural waters. Appl Envir Microbiol 41:621–627

    Google Scholar 

  • Laycock MV, McInnes, Morgan KC (1979) d-Homocysteic acid from Palmaria palmata. Phytochem 18:1220

    Article  Google Scholar 

  • Leidner H, Gloor R, Wüest D, Wuhrmann K (1980) The influence of the sulfonic group on the biodegradability of n-alkylbenzene sulfonates. Xenobiotica 10:47–56

    PubMed  Google Scholar 

  • Ninnemann H, Jüttner F (1981) Volatile substances from tissue cultures of potato, tomato and their somatic fusion products. Comparison of gas chromatographic patterns for identification of hybrids. Z Pflanzenphysiol 103:95–101

    Google Scholar 

  • Organikum (1974) Organisch-chemisches Grundpraktikum, 13. Aufl. VEB Deutscher Verlag der Wissenschaften, Berlin

    Google Scholar 

  • Panter R, Penzhorn RD (1980) Alkyl sulfonic acids in the atmosphere. Atmospheric Environment 14:149–151

    Article  Google Scholar 

  • Payne WJ, Feisal VE (1963) Bacterial utilization of dodecyl sulfate and dodecyl benzene sulfonate. Appl Microbiol 11:339–344

    PubMed  Google Scholar 

  • Plennart W, Heine W (1973) Normalwerte, 4. Aufl. VEB Verlag Volk und Gesundheit, Berlin

    Google Scholar 

  • Rhodes D, Stewart GR (1974) A procedure for the in vivo determination of enzyme activity in higher plant tissue. Planta (Berlin) 118:133–144

    Google Scholar 

  • Ripin MJ, Noon KF, Cook TM (1971) Bacterial metabolism of arylsulfonates. 1. Benzene sulfonate as growth substrate for Pseudomonas testosteroni H-8. Appl Microbiol 21:495–499

    PubMed  Google Scholar 

  • Schmidt A (1972) Über Teilreaktionen der photosynthetischen Sulfatreduktion in zellfreien Systemen aus Spinat-chloroplasten und Chlorella. Z Naturforsch 27b:183–192

    Google Scholar 

  • Schmidt A (1975) Distribution of APS sulfototransferase activity among higher plants. Plant Sci Lett 5:407–415

    Google Scholar 

  • Schmidt A (1977) Exchange of cysteine-bound sulfide with free sulfide and cysteine synthetase activity in Chlorella pyrenoidosa. Z Pflanzenphysiol 84:435–446

    Google Scholar 

  • Schmidt A, Erdle I (1983) A cysteine desulfhydrase specific for d-cysteine in the green alga Chlorella fusca. Z Naturforsch 38c:428–435

    Google Scholar 

  • Shibuya J, Yagi T, Benson AA (1963) Sulfonic acids in algae. In: Studies on microalgae and photosynthetic bacteria. Special issue of Plant and Cell Physiology, Japanese Society of Plant Physiologists (ed). The University of Tokyo Press, pp 627–636

  • Shimamoto G, Berk RS (1980a) Taurine catabolism. II. Biochemical and genetic evidence for sulfoacetaldehyde sulfo-lyase involvement. Biochim Biophys Acta 632:121–130

    PubMed  Google Scholar 

  • Shimamoto G, Berk RS (1980b) Taurine catabolism. III. Evidence for the participation of the glyoxylate cycle. Biochim Biophys Acta 632:399–407

    PubMed  Google Scholar 

  • Siegel LM (1965) A direct microdetermination for sulfide. Anal Biochem 11:126–132

    PubMed  Google Scholar 

  • Sörbo BH (1955) Rhodanese. In: Colowick S, Kaplan N (eds) Methods in enzymology, vol II. Academic Press, New York, pp 334–337

    Google Scholar 

  • Stapley EO, Starkey RL (1970) Decomposition of cysteic acid and taurine by soil micro-organism. J Gen Microbiol 64:77–84

    Google Scholar 

  • Stein W, Baumann H (1975) α-Sulfonated fatty acids and esters: Manufacturing process, properties and applications. J Am Oil Chem Soc 52:323–329

    Google Scholar 

  • Sullivan WT, Swisher RD (1969) MBAS and LAS surfactants in the Illinois River 1968. Envir Sci Technol 3:481–483

    Google Scholar 

  • Taylor CD, Wolfe RS (1974) Structure and methylation of coenzyme M (SH−CH2−CH2−SO3). J Biol Chem 249:4879–4885

    PubMed  Google Scholar 

  • Thysse GJE, Wanders TH (1972) Degradation of n-alkane-1-sulfonates by Pseudomonas. J Microbiol Serol 38:53–63

    Google Scholar 

  • Thysse GJE, Wanders TH (1974) Initialsteps in the degradation of n-alkane-1-sulfonates by Pseudomonas. J Microbiol Serol 40:25–37

    Google Scholar 

  • Wagner FC, Reid EE (1931) The stability of the carbon-sulfur bond in some aliphatic sulfonic acids. J Am Chem Soc 53:3407–3413

    Google Scholar 

  • Wickberg JW (1957) Isolation of 2-l-amino-3-hydroxi-1-propane sulfonic acid from Polysiphonia fastigiata. Acta Chem Scand 11:506–511

    Google Scholar 

  • Willetts AJ, Cain RB (1972) Microbial metabolism of alkylbenzene sulfonates. Bacterial metabolism of undecylbenzene-p-sulfonate and dodecylbenzene-p-sulfonate. Biochem J 129:389–402

    PubMed  Google Scholar 

  • Willetts AJ (1973) Microbial metabolism of alkylbenzene sulfonates. Fungal metabolism of 1-phenylundecane-p-sulfonate and 1-phenyldodecane-p-sulfonate. J Microbiol Serol 39:585–597

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biedlingmaier, S., Schmidt, A. Alkylsulfonic acids and some S-containing detergents as sulfur sources for growth of Chlorella fusca . Arch. Microbiol. 136, 124–130 (1983). https://doi.org/10.1007/BF00404786

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00404786

Key words

Navigation