Skip to main content

The effect of exogenous N6-(Δ2-isopentenyl)adenine on aerobic energy generation in Zymomonas mobilis

Abstract

A direct linear relationship between the rate of oxygen consumption and ATP content in starved Zymomonas mobilis cells was observed in the presence of ethanol (0.056–1.12 mM) as the substrate. Both the rate of oxygen consumption and the ATP content were significantly reduced by the exogenously added plant growth substance N6-(Δ2-isopentenyl)adenine (i6Ade), directly proportional to the concentration (0.125–0.5 mM) of i6Ade in the incubation medium. The results obtained are consistent with the current view of ATP synthesis by oxidative phosphorylation in non-growing Z. mobilis cells and gives evidence that i6Ade can be used as a tool to affect in vivo the alcohol dehydrogenase reaction, which provides reducing equivalents for ethanol-dependent aerobic energy generation.

This is a preview of subscription content, access via your institution.

References

  1. An H, Scopes RK, Rodriguez M, Keshav KF, Ingram LO (1991) Gel electrophoretic analysis of Zymomonas mobilis glucolytic and fermentative enzymes: identification of alcohol dehydrogenase II as a stress protein. J Bacteriol 173:5975–5982

    PubMed  Google Scholar 

  2. Anderson RF, Patel KB, Evans MD (1985) Changes in the survival curve shape of E. coli cells following irradiation in the presence of uncouplers of oxidative phosphorylation. Int J Radiat Biol 48:495–504

    Google Scholar 

  3. Barthel T, Jonas R, Sahm H (1989) NADP+-dependent acetaldehyde dehydrogenase from Zymomonas mobilits. Isolation and partial characterization. Arch Microbiol 153:95–100

    Article  Google Scholar 

  4. Bernt E, Gutmann I (1981) Ethanol. Determination with alcohol dehydrogenase and NAD. In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol 3. Verlag Chemie, Deerfield Beach, pp 1499–1502

    Google Scholar 

  5. Bringer S, Finn RK, Sahm H (1984) Effect of oxygen on the metabolism of Zymomonas mobilis. Arch Microbiol 139:376–381

    Google Scholar 

  6. Bringer S, Härtner T, Poralla K, Sahm H (1985) Influence of ethanol on the hopanoid content and the fatty acid pattern in batch and continuous cultures of Zymomonas mobilis. Arch Microbiol 140:312–316

    Google Scholar 

  7. Conway T, Sewell GW, Osman YA, Ingram LO (1987) Cloning and sequencing of the alcohol dehydrogenase II gene from Zymomonas mobilis. J Bacteriol 169:2591–2597

    PubMed  Google Scholar 

  8. Dawes EA, Large PJ (1970) Effect of starvation on the viability and cellular constituents of Zymomonas anaerobia and Zymomonas mobilis. J Gen Microbiol 60:31–42

    PubMed  Google Scholar 

  9. Greene EM (1980) Cytokinin production by microorganisms. Bot Rev 46:25–74

    Google Scholar 

  10. Guerin M, Camongrand N, Velours G, Guerin B (1982) New mutants resistant to glucose repression affected in the regulation of the NADH reoxidation. Eur J Biochem 124:457–463

    PubMed  Google Scholar 

  11. Ishikawa H, Nobayashi H, Tanaka H (1990) Mechanism of fermentation performance of Zymomonas mobilis under oxygen supply in batch culture. J Ferment Bioeng 70:34–40

    Google Scholar 

  12. Kadenbach B (1986) Regulation of respiration and ATP synthesis in higher organisms: hypothesis. J Bioonerg Biomembr 18: 39–54

    Google Scholar 

  13. Kalnenieks U, Graaf AA de, Bringer-Meyer S, Sahm H (1993) Oxidative phosphorylation in Zymomonas mobilis. Arch Microbiol 160:74–79

    Google Scholar 

  14. Lundin A, Richardson A, Thore A (1976) continuous monitoring of ATP converting reactions by purified firefly luciferase. Anal Biochem 75:611–620

    PubMed  Google Scholar 

  15. Maitra PK, Estabrook RW (1967) Studies of baker's yeast metabolism. 3. Oxidation of acetaldehyde. Arch Biochem Biophys 121:140–146

    PubMed  Google Scholar 

  16. Miller CO (1982) Cytokinin modification of mitochondrial function. Plant Physiol 69:1274–1277

    Google Scholar 

  17. Neale AD, Scopes RK, Kelly JM, Wettenhall REH (1986) The two alcohol dehydrogenases of Zymomonas mobilis. Purification by differential dye ligand chromatography, molecular characterization and physiological roles. Eur J Biochem 154:119–124

    PubMed  Google Scholar 

  18. Pankova LM, Shvinka YE, Beker MJ (1988) Regulation of intracellular H+ balance in Zymomonas mobilis during the shift from anaerobic to aerobic conditions. Appl Microbiol Biotechnol 28: 583–588

    Article  Google Scholar 

  19. Scopes RK (1983) An iron-activated alcohol dehydrogenase. FEBS Lett 156:303–306

    Article  PubMed  Google Scholar 

  20. Zikmanis PB, Krūce RV (1988) Auxins, cytokinins and yeast (in Russian). Izv Akad Nauk LatvSSR 8:91–98

    Google Scholar 

  21. Zikmanis P, Krūce R, Auzina L, Bankovsky V (1992) 390-1 inhibits the alcohol dehydrogenase activity in cell-free extracts of Zymomonas mobilis. Arch Microbiol 158:203–207

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pēteris Zikmanis.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zikmanis, P., Kruce, R., Gaļiņina, Ņ. et al. The effect of exogenous N6-(Δ2-isopentenyl)adenine on aerobic energy generation in Zymomonas mobilis . Arch. Microbiol. 163, 387–390 (1995). https://doi.org/10.1007/BF00404213

Download citation

Key words

  • Zymomonas mobilis
  • Oxygen consumption
  • ATP generation
  • Plant-growth substances
  • N6-(Δ2-Isopentenyl)adenine