Skip to main content
Log in

Osmotic adaptation in Brevibacterium linens: differential effect of proline and glycine betaine on cytoplasmic osmolyte pool

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

In the coryneform Brevibacterium linens, ectoine constitutes the major intracellular solute accumulated under elevated medium osmolarity. Here we report that exogenously supplied proline, choline, glycine betaine, and even ectoine, protected bacterial cells against deleterious effects of a hyperosmotic constraint (i.e. 1.5 M NaCl). In all cases, a significant improvement of growth was observed; in parallel, intracellular osmolyte pools composed mainly of glutamate and ectoine substantially increased, either with added glycine betaine (under limiting supply) or with proline. However, these two osmoprotectants behaved differently: glycine betaine acted as a genuine osmoprotectant, whereas proline was accumulated only transiently and participated actively in the biosynthesis of glutamate, ectoine, and trehalose. The strategy developed by B. linens cells allows the proposal of a novel role for proline in the osmoprotection process through its conversion to the apparently preferred endogenous osmolyte ectoine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bae JH, Miller KJ (1992) Identification of two proline transport systems in Staphylococcus aureus and their possible roles in osmoregulation. Appl Environ Microbiol 58:471–475

    PubMed  Google Scholar 

  • Bernard T, Jebbar M, Rassouli Y, Himdi-Kabbab S, Hamelin J, Blanco C (1993) Ectoine accumulation and osmotic regulation in Brevibacterium linens. J Gen Microbiol 139:129–138

    Google Scholar 

  • Chang YY, Knetch R, Braun DC (1983) Amino acid analysis in the picomole range by precolumn derivatization and high performance liquid chromatography. Methods Enzymol 91:41–48

    PubMed  Google Scholar 

  • Collins MD (1987) Transfer of Brevibacterium ammoniagenes (Cooke and Keith) to the genus Corynebacterium as Corynebacterium ammoniagenes comb. nov. Int J Syst Bacteriol 37:442–443

    Google Scholar 

  • Csonka LN (1989) Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev 53:121–147

    PubMed  Google Scholar 

  • Csonka LN, Hanson AD (1991) Prokaryotic osmoregulation: genetics and physiology. Annu Rev Microbiol 45:569–606

    Article  PubMed  Google Scholar 

  • Frings E, Kunte HJ, Galinski EA (1993) Compatible solutes in representatives of the genera Brevibacterium and Corynebacterium: occurrence of tetrahydropyrimidines and glutamine. FEMS Microbiol Lett 109:25–32

    Article  Google Scholar 

  • Galinski EA (1993) Compatible solutes of halophilic eubacteria: molecular principles, water-solute interaction, stress protection. Experientia 49:487–496

    Google Scholar 

  • Galinski EA, Pfeiffer HP, Trüper HG (1985) 1,4,5,6-tetrahydro-2-methyl-4-pyrimidine carboxylic acid: a novel cyclic amino acid from halophilic phototrophic bacterium Ectothiorhodospira. Eur J Biochem 149:135–139

    PubMed  Google Scholar 

  • Glenn AR, Holliday S, Dilworth MJ (1991) The transport and catabolism of l-proline by cowpea Rhizobium NGR 234. FEMS Microbiol Lett 82:307–312

    Article  Google Scholar 

  • Gouesbet G, Blanco C, Hamelin J, Bernard T (1992) Osmotic adjustment in Brevibacterium ammoniagenes: pipecolic acid accumulation at elevated osmolalities. J Gen Microbiol 138:959–965

    Google Scholar 

  • Gouesbet G, Jebbar M, Talibart T, Bernard T, Blanco C (1994) Pipecolic acid is an osmoprotectant for Escherichia coli taken up by the general osmoporters ProU and ProP. Microbiology 140:2415–2422

    PubMed  Google Scholar 

  • Hutkins RW, Ellefson WL, Kashket ER (1987) Betaine transport imparts osmotolerance on a strain of Lactobacillus acidophilus. Appl Environ Microbiol 53:2275–2281

    Google Scholar 

  • Ikuta S, Matuura K, Imamura S, Misaki H, Horiuti Y (1977) Oxidative pathway of choline to betaine in the soluble fraction prepared from Arthrobacter globiformis. J Biochem 82:157–163

    PubMed  Google Scholar 

  • Jebbar M, Talibart R, Gloux K, Bernard T, Blanco C (1992) Osmoprotection of Escherichia coli by ectoine: uptake and accumulation characteristics. J Bacteriol 174:5027–5035

    PubMed  Google Scholar 

  • Jewell JB, Kashket E (1991) Osmotically regulated transport of proline by Lactobacillus acidophilus IFO 3532. Appl Environ Microbiol 57:2829–2833

    PubMed  Google Scholar 

  • Kawahara Y, Ohsumi T, Yoshihara Y, Ikeda S (1989) Proline in the osmoregulation of Brevibacterium lactofermentum. Agric Biol Chem 53:2475–2479

    Google Scholar 

  • Kawahara Y, Yoshihara Y, Ikeda S, Hirose Y (1990) Effect of glycine betaine, an osmoprotective compound on the growth of Brevibacterium lactofermentum. Appl Microbiol Biotechnol 33:574–577

    Article  Google Scholar 

  • Killham K, Firestone MK (1984) Proline transport increases growth efficiency in salt-stressed Streptomyces griseus. Appl Environ Microbiol 48:239–241

    PubMed  Google Scholar 

  • Kunte HJ, Galinski EA, Trüper HG (1993) A modified FMOC-method for the detection of amino acid-type osmolytes and tetrahydropyrimidines (ectoines). J Microbiol Methods 17:129–136

    Article  Google Scholar 

  • Larsen PI, Sydnes LK, Landfald B, Ström AR (1987) Osmoregulation in Escherichia coli by accumulation of organic osmolytes: betaines, glutamic acid, and trehalose. Arch Microbiol 147:1–7

    PubMed  Google Scholar 

  • Liebl W, Ehrmann M, Ludwig W, Schleifer KH (1991) Transfer of Brevibacterium divaricatum DSM 20297T, “Brevibacterium flavum” DSM 20411, “Brevibacterium lactofermentum” DSM 20412 and DSM 1412, and Corynebacterium lilium DSM 20137T to Corynebacterium glutamicum and their distinction by rRNA gene restriction patterns. Int J Syst Bacteriol 41:255–260

    PubMed  Google Scholar 

  • Miller KJ, Zelt SC, Bae JH (1991) Glycine betaine and proline are the principal compatible solutes of Staphylococcus aureus. Curr Microbiol 23:131–137

    Google Scholar 

  • Perroud B, Le Rudulier D (1985) Glycine betaine transport in Escherichia coli: osmotic modulation. J Bacteriol 161:393–401

    PubMed  Google Scholar 

  • Severin J, Wohlfarth A, Galinski EA (1992) The predominant role of recently discovered tetrahydropyrimidines for the osmoadaptation of halophilic eubacteria. J Gen Microbiol 138:1629–1638

    Google Scholar 

  • Talibart R, Jebbar M, Gouesbet G, Himdi-Kabbab S, Wróblewski H, Blanco C, Bernard T (1994) Osmoadaptation in rhizobia: ectoine-induced salt tolerance. J Bacteriol 176:5210–5217

    PubMed  Google Scholar 

  • Welsh DT, Reed RH, Herbert RA (1991) The role of trehalose in the osmoadaptation of Escherichia coli NCIB 9484: interaction of trehalose, K+, and glutamate during osmoadaptation in continuous culture. J Gen Microbiol 137:745–750

    PubMed  Google Scholar 

  • Whatmore AM, Chudek JA, Reed RH (1990) The effect of osmotic upshock on the intracellular solute pools of Bacillus subtilis. J Gen Microbiol 136:2527–2535

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Théophile Bernard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jebbar, M., Gouesbet, G., Himdi-Kabbab, S. et al. Osmotic adaptation in Brevibacterium linens: differential effect of proline and glycine betaine on cytoplasmic osmolyte pool. Arch. Microbiol. 163, 380–386 (1995). https://doi.org/10.1007/BF00404212

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00404212

Key words

Navigation