Skip to main content
Log in

Impairment of afferent arteriolar myogenic responsiveness in the galactose-fed rat is prevented by tolrestat

  • Originals
  • Published:
Diabetologia Aims and scope Submit manuscript

Summary

By permitting the separation of increased aldose reductase activity from hyperglycaemia and insulin deficiency, galactose-fed rats have constituted a useful model for investigating diabetic complications. Such rats manifest an impaired afferent arteriolar responsiveness to pressure similar to that of rats 4 to 6 weeks after induction of diabetes with streptozotocin. In the present study, we investigated whether treatment of galactose-fed rats with the aldose reductase inhibitor tolrestat prevents this autoregulatory defect and whether the blunted afferent arteriolar responsiveness to pressure is associated with impaired responsiveness to angiotensin II. Pressure-induced vasoconstriction of afferent arterioles was assessed in kidneys made hydronephrotic to allow direct visualization of renal microvessels by computer-assisted image processing. Vessel diameters were quantitated following stepwise increments of renal perfusion pressure (RAP; from 80 to 180 mm Hg) in kidneys of control rats and rats fed a diet for 2 weeks with 50% galactose with or without tolrestat. Subsequent to the pressure studies, angiotensin II (0.3 nmol/l) was added to the perfusate, and vessel diameters were reassessed. Control rats exhibited progressive afferent arteriolar vasoconstriction when RAP was increased from 80 to 180mm Hg (−17.2±1.0%; p<0.001). In contrast, myogenic responses to increases in pressure were absent in the arterioles of the galactose-fed rats (−4.1±1.9%; N.S.). Treatment with tolrestat completely prevented this impairment in afferent arteriolar responsiveness (−16.5±1.8%; p<0.001). The angiotensin II-induced vasoconstriction did not differ between control rats and galactose-fed rats. We conclude that increased aldose reductase activity contributes to impaired renal autoregulation in galactose-fed rats, a model of diabetic nephropathy, but is not involved in the loss of afferent arteriolar responsiveness to angiotensin II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

STZ:

Streptozotocin

GFR:

Glomerular filtration rate

RAP:

renal artery pressure

AR:

aldose reductase

References

  1. Hostetter TH, Rennke HG, Brenner BM (1982) The case for intrarenal hypertension in the initiation and progression of diabetic and other glomerulopathies. Am J Med 72: 375–380

    Article  PubMed  CAS  Google Scholar 

  2. Zatz R, Meyer T, Rennke H, Brenner BM (1985) Predominance of hemodynamic rather than metabolic factors in the pathogenesis of diabetic glomerulopathy. Proc Natl Acad Sci 82: 5963–5967

    Article  PubMed  CAS  Google Scholar 

  3. Jensen PK, Christiansen JS, Steven K, Parving HH (1987) Strict metabolic control and renal function in the streptozotocin diabetic rat. Kidney Int 31: 47–51

    Article  PubMed  CAS  Google Scholar 

  4. Hostetter TH (1990) Pathogenesis of diabetic glomerulopathy: haemodynamic considerations. Semin Nephrol 10: 219–227

    PubMed  CAS  Google Scholar 

  5. Hayashi K, Epstein M, Loutzenhiser R, Forster H (1992) Impaired myogenic responsiveness of the afferent arteriole in streptozotocin-induced diabetic rats: role of eicosanoid derangements. J Am Soc Nephrol 2: 1578–1586

    PubMed  CAS  Google Scholar 

  6. Forster HG, ter Wee PM, Takenaka T, Hohman TC, Epstein M (1994) Impairment of afferent arteriolar myogenic responsiveness in galactose-fed rat. Proc Soc Exp Biol Med 206: 365–374

    PubMed  CAS  Google Scholar 

  7. Loutzenhiser R, Epstein M, Hayashi K, Horton C (1990) Direct visualization of effects of endothelin on the renal microvasculature. Am J Physiol 258:F61-F68

    PubMed  CAS  Google Scholar 

  8. Epstein M, Flamenbaum W, Loutzenhiser R (1980) Characterization of the renin-angiotensin system in the isolated perfused rat kidney. Renal Physiol 2: 244–256

    CAS  Google Scholar 

  9. Steinhausen M, Snoei H, Parekh N, Baker R, Johnson PC (1983) Hydronephrosis: a new method to visualize vas afferens, efferens and glomerular network. Kidney Int 23: 794–806

    Article  PubMed  CAS  Google Scholar 

  10. Guerrant GO, Moss CW (1984) Determination of monosaccharides as aldonitrile o-methyloxime, alditol and cyclitol acetate derivatives by gas chromatography. Anal Chem 56: 633–638

    Article  CAS  Google Scholar 

  11. The Diabetes Control and Complications Trial Research Group (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes. N Engl J Med 329: 977–986

    Article  Google Scholar 

  12. Reichard P, Nilsson B, Rosenqvist U (1993) The effect of long-term intensified insulin treatment on the development of microvascular complications of diabetes mellitus. N Engl J Med 329: 304–309

    Article  PubMed  CAS  Google Scholar 

  13. Oates PJ (1994) Diabetes nephropathy, renal hemodynamics and aldose reductase inhibitors. Drug Develop Res 32: 104–116

    Article  CAS  Google Scholar 

  14. Greene DA, Sima AAF, Stevens MJ et al (1993) Aldose-reductase inhibitors: an approach to the treatment of diabetic nerve damage. Diabetes Metab Rev 9: 189–217

    Article  PubMed  CAS  Google Scholar 

  15. Cameron NE, Cotter MA, Dines KC, Maxfield EK, Carey F, Mirrlees DJ (1994 Aldose reductase inhibition, nerve perfusion, oxygenation and function in streptozotocin-diabetic rats: dose-response considerations and independence from a myo-inositol mechanism. Diabetologia 37: 651–663

    Article  PubMed  CAS  Google Scholar 

  16. Cameron NE, Cotter MA (1994) The relationship of vascular changes to metabolic factors in diabetes mellitus and their role in the development of peripheral nerve complications. Diabetes Metab Rev 10: 189–224

    PubMed  CAS  Google Scholar 

  17. Tomlinson DR, Willars GB, Carrington AL (1992) Aldose reductase inhibitors and diabetic complications. Pharmac Ther 54: 151–194

    Article  CAS  Google Scholar 

  18. Williamson JR, Chang K, Frangos M et al. (1993) Hyperglycemia pseudohypoxia and diabetic complications. Diabetes 42: 801–813

    Article  PubMed  CAS  Google Scholar 

  19. McCaleb ML, Sredy J, Millen J, Ackerman DM, Dvornik D (1988) Prevention of urinary albumin excretion in 6 month streptozotocin-diabetic rats with the aldose reductase inhibitor tolrestat. J Diab Compl 2: 16–18

    Article  CAS  Google Scholar 

  20. McCaleb ML, McKean ML, Hohman TC, Laver N, Robison WG, Jr (1991) Intervention with the aldose reductase inhibitor, tolrestat, in renal and retinal lesions of streptozotocin-diabetic rats. Diabetologia 34: 695–701

    Article  PubMed  CAS  Google Scholar 

  21. Tilton RG, Chang K, Pugliese G et al. (1989) Prevention of hemodynamic and vascular albumin filtration changes in diabetic rats by aldose reductase inhibitors. Diabetes 37: 1258–1270

    Article  Google Scholar 

  22. Giugliano D, Marfella R, Quatraro A et al. (1993) Tolrestat for mild diabetic neuropathy: a 52-week, randomized, placebo-controlled trial. Ann Intern Med 118: 7–11

    PubMed  CAS  Google Scholar 

  23. Santiago JV, Sonksen PH, Boulton AJM, Macleod A et al. (1993) Withdrawal of the aldose reductase inhibitor tolrestat in patients with diabetic neuropathy: effect on nerve function. J Diab Comp 7: 170–178

    Article  CAS  Google Scholar 

  24. Sima AAF, Bril V, Nathaniel V et al. (1988) Regeneration and repair of myelinated fibers in sural nerve biopsy specimens from patients with diabetic neuropathy treated with sorbinil. N Engl J Med 319: 548–555

    PubMed  CAS  Google Scholar 

  25. Passariello N, Sepe J, Marrazzo G et al. (1993) Effect of aldose reductase inhibitor (tolrestat) on urinary albumin excretion rate and glomerular filtration rate in IDDM subjects with nephropathy. Diabetes Care 16: 789–795

    Article  PubMed  CAS  Google Scholar 

  26. Pedersen MM, Christiansen JS, Mogensen CE (1991) Reduction of glomerular hyperfiltration in normoalbuminuric IDDM patients after 6 mo of aldose reductase inhibition. Diabetes 40: 527–531

    Article  PubMed  CAS  Google Scholar 

  27. Sima AAF, Prashar A, Zhang W, Chakrabarti S, Greene DA (1990) Preventative effect of long-term aldose reductase inhibition (ponalrestat) on nerve conduction and sural-nerve structure in the spontaneously diabetic Bio-Breeding rat. J Clin Invest 85: 1410–1420

    Article  PubMed  CAS  Google Scholar 

  28. Sarges R, Oates PJ (1993) Aldose reductase inhibitors: recent developments. Prog Drug Res 40: 99–161

    PubMed  CAS  Google Scholar 

  29. Goldfarb S, Ziyadeh FN, Kern EFO, Simmons DA (1991) Effects of polyol-pathway inhibition and dietary myo-inositol on glomerular hemodynamic function in experimental diabetes mellitus in rats. Diabetes 40: 465–471

    Article  PubMed  CAS  Google Scholar 

  30. Craven PA, DeRubertis FR (1989) Sorbinil suppresses glomerular prostaglandin production and reduces hyperfiltration in the streptozotocin diabetic rat. Metab Clin Exp 38: 649–654

    PubMed  CAS  Google Scholar 

  31. Williamson JR, Chang K, Tilton RG et al. (1987) Increased vascular permeability in spontaneously diabetic BB/W rats and in rats with mild versus severe streptozotocin-induced diabetes. Diabetes 36: 813–821

    Article  PubMed  CAS  Google Scholar 

  32. Bank N, Mower P, Aynedjian HS, Wilkes BM, Silverman S (1989) Sorbinil prevents glomerular hyperperfusion in diabetic rats. Am J Physiol 256:F1000-F1006

    PubMed  CAS  Google Scholar 

  33. Pugliese G, Tilton RG, Speedy A et al. (1990) Vascular filtration function in galactose-fed versus diabetic rats: the role of polyol pathway activity. Metabolism 39: 690–697

    Article  PubMed  CAS  Google Scholar 

  34. Donnelly S, Zhou Z, Whiteside C (1993) Attenuation of early diabetic glomerulopathy by tolrestat. J Am Soc Nephrol 4: 793 (Abstract)

    Google Scholar 

  35. Daniels BS, Hostetter TH (1989) Aldose reductase inhibition and glomerular abnormalities in diabetic rats. Diabetes 38: 981–986

    Article  PubMed  CAS  Google Scholar 

  36. Mauer SM, Steffes MW, Azar S, Brown DM (1989) Effects of sorbinil on glomerular structure and function in long-term diabetic rats. Diabetes 38: 839–846

    Article  PubMed  CAS  Google Scholar 

  37. Bank N, Coco M, Aynedjian HS (1989) Galactose feeding causes glomerular hyperperfusion: prevention by aldose reductase inhibition. Am J Physiol 256:F994-F999

    PubMed  CAS  Google Scholar 

  38. Oates PJ, Pustilnik LR (1990) Sorbinil prevents galactose-induced renal hyperperfusion. FASEB J 4:A437 (Abstract)

    Google Scholar 

  39. Oates P, Ellery CA (1990) Measurement of blood flow in the superficial renal cortex of normal and galactose-fed rats by laser Doppler flowmetry. Kidney Int 37: 554 (Abstract)

    Google Scholar 

  40. Moncada S, Palmer RMJ, Higgs EA (1991) Nitric oxide, physiology and pharmacology. Pharmacol Rev 43: 109–142

    PubMed  CAS  Google Scholar 

  41. Tilton RG, Baier LD, Harlow JE, Smith SR, Ostrow E, Williamson JR (1992) Diabetes-induced glomerular dysfunction: links to a more reduced cytosolic ratio of NADH/NAD+. Kidney Int 41: 778–788

    Article  PubMed  CAS  Google Scholar 

  42. Cameron NE, Cotter MA (1992) Impaired contraction and relaxation in aorta from streptozotocin-diabetic rats: role of polyol pathway. Diabetologia 35: 1011–1019

    Article  PubMed  CAS  Google Scholar 

  43. Gonzalez A-M, Sochor M, Hothersall JS, McLean P (1986) Effect of aldose reductase inhibitor (sorbinil) on integration of polyol pathway, pentose phosphate pathway, and glycolytic route in diabetic rat lens. Diabetes 35: 1200–1205

    Article  PubMed  CAS  Google Scholar 

  44. De Mattia G, Laurenti O, Bravi C, Ghiselli A, Luliano L, Balsano F (1994) Effect of aldose reductase inhibition of glutathione redox status in erythrocytes of diabetic patients. Metabolism 43: 965–968

    Article  PubMed  Google Scholar 

  45. Sato S, Kador PF (1990) NADPH-dependent reductase of the dog lens. Exp Eye Res 50: 629–634

    Article  PubMed  CAS  Google Scholar 

  46. Urbanowski JC, Cohenford MA, Dain JA (1982) Nonenzymatic galactosylation of human serum albumin. In vitro preparation. J Biol Chem 257: 111–115

    PubMed  CAS  Google Scholar 

  47. Bunn HF, Higgins PJ (1981) Reaction of monosaccharides with proteins: possibly evolutionary significance. Science (USA) 213: 222–224

    CAS  Google Scholar 

  48. Kern TS, Engerman RL (1995) Galactose-induced retinal microangiopathy in rats. Invest Ophthalmol Vis Sci 36: 490–496

    PubMed  CAS  Google Scholar 

  49. Robison WG Jr, Laver NM, York BM, Chandler ML, Lou MF (1993) ARI intervention studies of galactose induced retinopathy by computer analysis of retinal vessel images. Invest Ophthalmol Vis Sci 34[Suppl]:718

    Google Scholar 

  50. Sarubbi D, McGiff JC, Quilley J (1989) Renal vascular responses and eicosanoid release in diabetic rats. Am J Physiol 257:F762-F768

    PubMed  CAS  Google Scholar 

  51. Kikkawa R, Kitamura E, Fujiwara Y, Arimura T, Haneda M, Shigeta Y (1986) Impaired contractile responsiveness of diabetic glomeruli to angiotensin II: a possible indication of mesangial dysfunction in diabetes mellitus. Biochem Biophys Res Commun 136: 1185–1190

    Article  PubMed  CAS  Google Scholar 

  52. ter Wee PM, Forster H, Epstein M (1992) Rapid initiation of attenuated pressure- and angiotensin II (AII)-induced vasoconstriction of rat afferent arteriole (AA) in untreated diabetes mellitus (DM). J Am Soc Nephrol 3: 767 (Abstract)

    Google Scholar 

  53. Williams B, Tsai P, Schrier R (1992) Glucose-induced down-regulation of angiotensin II and arginine vasopressin receptors in cultured rat aortic vascular smooth muscle cells. J Clin Invest 90: 1992–1999

    Article  PubMed  CAS  Google Scholar 

  54. Wilkes BM, Kaplan R, Mento PF et al. (1992) Reduced glomerular thromboxane receptor sites and vasoconstrictor responses in diabetic rats. Kidney Int 41: 992–999

    Article  PubMed  CAS  Google Scholar 

  55. DeRubertis FR, Craven PA (1994) Activation of protein kinase C in glomerular cells in diabetes: mechanisms and potential links to the pathogenesis of diabetic glomerulopathy. Diabetes 43: 1–8

    Article  PubMed  CAS  Google Scholar 

  56. DeRubertis FR, Craven PA (1993) Eicosanoids in the pathogenesis of the functional and structural alterations of the kidneys in diabetes. Am J Kid Dis 22: 727–735

    PubMed  CAS  Google Scholar 

  57. Studer RK, Craven PA, DeRubertis FR (1993) Activation of protein kinase C reduces thromboxane receptors in glomeruli and mesangial cells. Kidney Int 44: 58–64

    Article  PubMed  CAS  Google Scholar 

  58. Ballerman BJ, Skorecki KL, Brenner BM (1984) Reduced glomerular angiotensin II receptor density in early untreated diabetes mellitus in the rat. Am J Physiol 247:F110-F116

    Google Scholar 

  59. Carmines PK, Ohishi K (1994) Defect in voltage-dependent contraction of afferent arterioles during the hyperfiltration stage of diabetes mellitus in the rat. J Hypertens 12[Suppl 3]:S36 (Abstract)

    Google Scholar 

  60. Hayashi K, Epstein M, Loutzenhiser R (1989) Pressure-induced vasoconstriction of renal microvessels in normotensive and hypertensive rats: studies in the isolated perfused hydronephrotic kidney. Circ Res 65: 1475–1484

    PubMed  CAS  Google Scholar 

  61. Harder DR, Gilbert R, Lombard JH (1987) Vascular muscle cell depolarization and activation in renal arteries on elevation of transmural pressure. Am J Physiol 253:F778-F781

    PubMed  CAS  Google Scholar 

  62. Harder DR (1987) Pressure-induced myogenic activation of cat cerebral arteries is dependent on intact endothelium. Circ Res 60: 102–107

    PubMed  CAS  Google Scholar 

  63. Sowers J, Epstein M (1995) Diabetes mellitus and hypertension: Emerging therapeutic perspectives. Cardiovascular Drug Rev 13: 149–210

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forster, H.G., ter Wee, P.M., Hohman, T.C. et al. Impairment of afferent arteriolar myogenic responsiveness in the galactose-fed rat is prevented by tolrestat. Diabetologia 39, 907–914 (1996). https://doi.org/10.1007/BF00403909

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00403909

Keywords

Navigation