, Volume 113, Issue 4, pp 233–244 | Cite as

Ingestion, digestion, and egestion in Spongilla lacustris (Porifera, Spongillidae) after pulse feeding with Chlamydomonas reinhardtii (Volvocales)

  • Georg Imsiecke


The route followed by food particles in Spongilla lacustris was clarified by light and electron microscopic examination of sponges fed with Chlamydomonas reinhardtii. The algal cells are phagocytosed by prosendopinacocytes and choanocytes. After some time they are transferred to archaeocytes, amoebocytes, and lophocytes. Changes in algal structure during digestion were observed and the egestion of algal remnants was documented in life for the first time. In light micrographs, digestion of the algal cells is manifest first in shrinkage of the cells, then in disintegration to form several spherical green fragments 2–3 μm in diameter, and finally, after 12–18 h, in a reddish brown discoloration of the fragments. Signs of the digestive process in electron micrographs include disappearance of the cell-wall layers, the flagella, and the pyrenoid and its starch sheath, as well as a progressive increase in the density of the cytoplasm and karyoplasm.


Starch Developmental Biology Microscopic Examination Electron Micrographs Progressive Increase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Castro Rodriguez G (1930) De la symbiose entre la Spongilla lacustris et les Zoochlorelles. Ann Soc R Zool Belg 61:113–123Google Scholar
  2. Chambers VC (1973) The use of ruthenium red in an electron microscope study of cytophagocytosis. J Cell Biol 57:874–878Google Scholar
  3. De Duve C (1967) Lysosomes and phagosomes (the vacuolar apparatus). Symp. on Biophys. and Physiol. of Biol. Transport. Springer, Wien New York, pp 95–98Google Scholar
  4. Friedmann I, Colwin AL, Colwin LH (1968) Fine-structural aspects of fertilization in Chlamydomonas reinhardi. J Cell Sci 3:115–128Google Scholar
  5. Frost TM (1976) Sponge feeding. In: Harrison FW, Cowden R (ed) Aspects of sponge biology. A review with a discussion of some continuing research. Academic Press, New York San Francisco London, pp 283–298Google Scholar
  6. Garrone R, Thiney Y, Pavans de Cecatty M (1971) Electron Microscopy of a mucopolysaccharide cell coat in sponges. Experientia 27:1324–1326Google Scholar
  7. Goodenough UW, Heuser JE (1985) The Chlamydomonas cell wall and its constituent glycoproteins analysed by the quick-freeze, deep-etch technique. J Cell Biol 101:1550–1568Google Scholar
  8. Hausmann K (1980) Cytosen bei Ciliaten. BiuZ 10:137–147Google Scholar
  9. Kilian EF (1952) Wasserströmung und Nahrungsaufnahme beim Süßwasserschwamm Ephydatia fluviatilis. Z Vergl Physiol 34:407–447Google Scholar
  10. Klein U, Chen Ch, Gibbs M, Platt-Aloia A (1983) Cellular fractionation of Chlamydomonas reinhardii with emphasis on the isolation of the chloroplast. Plant Physiol 72:481–487Google Scholar
  11. Kuhl A (1962) Zur Physiologie der Speicherung kondensierter anorganischer Phosphate in Chlorella. In: Deut Bot Ges (ed), Beiträge zur Physiologie und Morphologie der Algen. Fischer, Stuttgart, pp 157–166Google Scholar
  12. Langenbruch P-F (1985) Die Aufnahme partikulärer Nahrung bei Reniera sp. (Porifera). Helgol Wiss Meeresunters 39:263–272Google Scholar
  13. Langenbruch P-F, Jones C (1990) Body structure of marine sponges. VI. Choanocyte chamber structure in the haplosclerida (Porifera, Demospongiae) and its relevance to the phylogenesis of the group. J Morphol 204:1–8Google Scholar
  14. Langenbruch P-F, Weissenfels N (1987) Canal systems and choanocyte chambers in freshwater sponges (Porifera, Spongillidae). Zoomorphology 107:11–16Google Scholar
  15. Lembi CA, Lang NJ (1965) Electron microscopy of Carteria and Chlamydomonas. Am J Bot 52(5):464–477Google Scholar
  16. Luft JH (1971a) Ruthenium red and violet. I. Chemistry, purification, methods of use for electron microscopy and mechanism of action. Anat Rec 171:347–368Google Scholar
  17. Luft JH (1971b) Ruthenium red and violet. II. Fine structural localization in animal tissues. Anat Rec 171:369–416Google Scholar
  18. Paulus W, Weissenfels N (1986) The spermatogenesis of Ephydatia fluviatilis (Porifera). Zoomorphology 106:155–162Google Scholar
  19. Peck RK, Hausmann K (1980) Primary lysosomes of the ciliate Pseudomicrothorax dubius: Cytochemical identification and role in phagocytosis. J Protozool 27(4):401–409Google Scholar
  20. Pourbaix N (1933) Mécanisme de la nutrition chez les Spongillidae. Ann Soc R Zool Belg 64:11–21Google Scholar
  21. Quader H, Glas R (1984) Das Experiment: Geißelregeneration bei Chlamydomonas reinhardii. BiuZ 14:125–127Google Scholar
  22. Reynolds E (1963) The use of lead citrate at high pH as an electronopaque stain in electron microscopy. J Cell Biol 17:208–211Google Scholar
  23. Roberts K, Gurney-Smith M, Hills GJ (1972) Structure, composition and morphogenesis of the cell wall of Chlamydomonas reinhardi I. Ultrastructure and preliminary chemical analysis. J Ultrastruc Res 40:599–613Google Scholar
  24. Sager R, Palade GE (1956) Structure and development of the chloroplast in Chlamydomonas. I. The normal green cell. J Biophys Biochem Cytol 3(3):463–488Google Scholar
  25. Saller U (1989) Microscopical aspects on symbiosis of Spongilla lacustris (Porifera, Spongillidae) and green algae. Zoomorphology 108:291–296Google Scholar
  26. Sannes PhL, Katsuyama T, Spicer SS (1978) Tannic acid-metal salt sequences for light and electron microscopic localization of complex carbohydrates. J Histochem Cytochem 26(1):55–61Google Scholar
  27. Schötz F, Bathelt H, Arnold CG, Schimmer O (1972) Die Architektur und Organisation der Chlamydomonas-Zelle. Ergebnisse der Elektronemikroskopie und der daraus resultierenden dreidimensionalen Rekonstruktion. Protoplasma 75:229–254Google Scholar
  28. Simpson TL, Fell PE (1974) Dormancy among the Porifera: Gemmule formation and germination in fresh-water and marine sponges. Trans Am Micros Soc 93(4):544–577Google Scholar
  29. Stiemerling R, Stockem W (1975) Cytologische Untersuchungen zur Endo- und Exocytose bei acellulären Schleimpilzen. Protoplasma 85:243–260Google Scholar
  30. Stockem W (1973) Endocytose und intrazelluläre Verdauung. BiuZ 3:67–77Google Scholar
  31. Stockem W, Klopocka W (1988) Ameboid movement and related phenomena. Int Rev Cytol 112Google Scholar
  32. Stockem W, Komnick H (1970) Erfahrungen mit der Styrol-Methacrylat-Einbettung als Routinemethode für die Licht- und Elektronenmikroskopie. Mikroskopie Band 26/Heft 5/6, 199–203Google Scholar
  33. Stockem W, Stiemerling R (1976) Intracellular segregation of endocytotically ingested substances. Cytobiol 13:158–168Google Scholar
  34. Strasburger E (1983) Lehrbuch der Botanik für Hochschulen. 32. Aufl. Neubearb. von Dietrich v. Denffer ... Fischer, Stuttgart New YorkGoogle Scholar
  35. Tessenow W, Kreutzmann HL (1969) Saure Phosphatase und Differenzierung der Archaeozyten bei Süßwasserschwämmen (Spongillidae). Biol Rundschau, Jena, pp 180–181Google Scholar
  36. Tiffon Y, Rasmont R, De Vos L, Bouillon J (1973) Digestion in lower metazoa. 1. Sponges. In: Dingle JT (ed) Lysosomes in biology and pathology vol 3. Elsevier Science Publishers, Amsterdam London New York, pp 49–56Google Scholar
  37. Van Trigt H (1919) A Contribution to the physiology of the freshwater sponges (Spongillidae). Tijdschr Ned Dierkd Verigg (2)17,1:1–220Google Scholar
  38. Van Weel PB (1949) On the physiology of the tropical fresh-water sponge, Spongilla proliferens Annand. I. Ingestion, Digestion and Excretion. Physiol Comp 1:110–128Google Scholar
  39. Weissenfels N (1976) Bau und Funktion des Süßwasserschwamms Ephydatia fluviatilis L. (Porifera). III. Nahrungsaufnahme, Verdauung und Defäkation. Zoomorphologie 85:73–88Google Scholar
  40. Weissenfels N (1989) Biologie und mikroskopische Anatomie der Süßwasserschwämme (Spongillidae). Fischer, Stuttgart New YorkGoogle Scholar
  41. Weissenfels N (1992) The filtration apparatus for food collection in freshwater sponges (Porifera, Spongillidae). Zoomorphology 112:51–55Google Scholar
  42. Weissenfels N, Langenbruch P-F (1985) Langzeitkulturen von Süßwasserschwämmen (Porifera, Spongillidae) unter Laborbedingungen. Zoomorphologie 105:12–15Google Scholar
  43. Willenz Ph (1980) Kinetic and morphological aspects of particle ingestion by the freshwater sponge Ephydatia fluviatilis L. In: Smith DC, Tiffon Y (eds) Nutrition in the lower metazoa. Pergamon Press, Oxford New York, pp 163–178Google Scholar
  44. Willenz Ph, Van de Vyver G, (1982) Endocytosis of latex beads by the exopinacoderm in the fresh water sponge Ephydatia fluviatilis: An in vitro and in situ study in SEM and TEM. J Ultrastruct Res 79:294–306Google Scholar
  45. Willenz Ph, Van de Vyver G (1984) Ultrastructural localization of lysosomal digestion in the fresh water sponge Ephydatia fluviatilis. J Ultrastruct Res 87:13–22Google Scholar
  46. Williamson CE (1979) An ultrastructural investigation of algal symbiosis in white and green Spongilla lacustris (L.) (Porifera: Spongillidae). Trans Am Micros Soc 98(1):59–77Google Scholar
  47. Wintermann G (1951) Entwicklungsphysiologische Untersuchungen an Süßwasserschwämmen. Zool Jahrb Abt Anat 71:427–486Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Georg Imsiecke
    • 1
  1. 1.Institut für Physiologische Chemie, Abteilung Angewandte MolekularbiologieJohannes Gutenberg-Universität MainzMainzGermany

Personalised recommendations