Elementary derivation of the chiral anomaly

Abstract

An elementary derivation of the chiral gauge anomaly in all even dimensions is given in terms of noncommutative traces of pseudo-differential operators.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Berline, N., Getzler, E., and Vergne, M.: Heat Kernels and Dirac Operators, Springer-Verlag, Berlin, 1992.

    Google Scholar 

  2. 2.

    Connes, A.: Noncommutative Geometry, Academic Press, New York, 1994.

    Google Scholar 

  3. 3.

    Cederwall, M., Ferretti, G., Nilsson, B., and Westerberg, A.: Schwinger terms and cohomology of pseudodifferential operators, hep-th/9410016.

  4. 4.

    Hörmander, L.: The Analysis of Linear Partial Differential Operators III, Springer-Verlag, 1985.

  5. 5.

    Langmann, E.: Non-commutative integration calculus, J. Math. Phys. (in press).

  6. 6.

    Langmann, E. and Mickelsson, J.: (3+1)-dimensional Schwinger terms and non-commutative geometry, Phys. Lett. B 338, 241 (1994).

    Article  Google Scholar 

  7. 7.

    Mickelsson, J.: Wodzicki residue and anomalies of current algebras, hep-th/9404093, in A. Alekseev, A. Hietamäki, K. Huitu, A. Morozov, and A. Niemi (eds), Integrable Models and Strings, Lecture Notes in Physics 436, Springer-Verlag, Berlin, 1994.

    Google Scholar 

  8. 8.

    Rennie, R.: Geometry and topology of chiral anomalies in gauge theories, Adv. Phys. 39, 617 (1990).

    Google Scholar 

  9. 9.

    Treiman, S. B., Jackiw, R., Zumino, B., and Witten, E.: Current Algebra and Anomalies, Princeton University Press, Princeton, 1985.

    Google Scholar 

  10. 10.

    Wodzicki, M.: Noncommutative residue, in Yu. Mannin (ed.), Lecture Notes in Mathematics 1289 Springer-Verlag, Berlin, 1985.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Langmann, E., Mickelsson, J. Elementary derivation of the chiral anomaly. Lett Math Phys 36, 45–54 (1996). https://doi.org/10.1007/BF00403250

Download citation

Mathematics Subject Classifications (1991)

  • 81T50
  • 81T13
  • 47N50

Key words

  • Chiral anomaly
  • noncommutative traces
  • pseudo-differential operators