Skip to main content
Log in

Organisation of the thoracic ganglia of the adult sphinx moth Manduca sexta (Insecta, Lepidoptera)

  • Published:
Zoomorphology Aims and scope Submit manuscript

Summary

The present work describes the neuroanatomy of the thoracic ganglia in the adult sphinx moth Manduca sexta from transverse, horizontal and sagittal sections in order to provide a basis for a more precise description of identified neurons and their connections within the thoracic ganglia. The prothoracic ganglion of M. sexta derives from a single neuromere, whereas the pterothoracic ganglion results from the fusion of the meso- and metathoracic and the first and second abdominal neuromeres. Each hemiganglion contains nine longitudinal tracts (MDT, LDT, DMT, DIT, VLT, VIT, LVT, MVT and VMT) and six dorsal (DC I–VI) and five ventral commissures (VC I, dVCL II, vVCL II, SMC and PVC). Additionally there are vertical or oblique tracts such as the T-tract, C-tract or I-tract. The ring tract could not be found, LDT, DIT, DMT and MVT1 are compact and well defined, whereas VMT and MVT and also VLT and VIT are difficult to separate in many sections. MDT and especially LVT are quite inconspicuous in transverse sections. In horizontal or sagittal sections it is much easier to identify these tracts. As in Locusta migratoria and Carausius morosus, the second dorsal commissure (DC II) is subdivided. DC IV and DC V are difficult to separate in all cutting planes. The results are compared with published data of other insects. The present work supports the hypothesis of a common basic pattern of all insect ganglia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CT :

C-tract

DC I-DC VI :

dorsal commissures I–VI

DIT :

dorsal intermediate tract

DMT :

dorsal medial tract

irs :

interganglionic rest space

IT :

I-tract

LDT :

lateral dorsal tract

LVT :

lateral ventral tract

MDT :

medial dorsal tract

mtr :

middle trachea

MVT :

medial ventral tract

PVC :

posterior ventral commissure

SMC :

supramedian commissure

TT :

T-tract

VC I :

ventral commissure 1

dVCL II :

dorsal aspect of ventral commissure II

vVCL II :

ventral aspect of ventral commissure II

VIT :

ventral intermediate tract

VLT :

ventral lateral tract

VMT :

ventral medial tract

References

  • Babu KS, Barth FG (1984) Neuroanatomy of the central nervous system of the wandering spider, Cupiennius salei (Arachnida, Araneida). Zoomorphology 104:344–359

    Google Scholar 

  • Boyan G, Williams L, Fullard J (1990) Organization of the auditory pathway in the thoracic ganglia of noctuid moths. J Comp Neurol 295:248–267

    PubMed  Google Scholar 

  • Bräunig P, Hustert R, Pflüger HJ (1981) Distribution and specific central projections of mechanoreceptors in the thorax and proximal leg joints of locusts. I. Morphology, location and innervation of internal proprioceptors of pro- and metathorax and their central projections. Cell Tissue Res 216:57–77

    PubMed  Google Scholar 

  • Casaday GB, Camhi JM (1976) Metamorphosis of flight neurons in the moth Manduca sexta. J Comp Physiol 112:143–158

    Google Scholar 

  • Dombrowski UJ (1987) Sensorik und Flugsteuerung bei einem Schmetterling (Manduca sexta L.). In: Elsner N, Creutzfeldt O (eds) New frontiers in brain research. Thieme, Stuttgart New York, p 47

    Google Scholar 

  • Eaton JL (1988) Lepidopteran anatomy. Wiley Interscience Publications, Wiley & Sons, New York

    Google Scholar 

  • Gregory GE (1974) Neuroanatomy of the mesothoracic ganglion of the cockroach. Phil Trans R Soc Lond 267:421–465

    Google Scholar 

  • Gregory GE (1980) The Bodian protargol technique. In: Strausfeld NJ, Miller TA (eds) Neuroanatomical techniques. Springer, Berlin New York, pp 77–95

    Google Scholar 

  • Kent KS, Levine RB (1988) Neural control of leg movements in a metamorphic insect: persistence of larval leg motor neurons to innervate the adult legs of Manduca sexta. J Comp Neurol 276:30–43

    PubMed  Google Scholar 

  • Kien J, Altman JS (1979) Connections of the locust wing tegulae with metathoracic motoneurons. J Comp Physiol 133:299–310

    Google Scholar 

  • Kittmann R, Dean J, Schmitz J (1991) An atlas of the thoracic ganglia in the stick insect, Carausius morosus. Phil Trans R Soc Lond B 331:101–121

    Google Scholar 

  • Pflüger HJ, Elson R, Binkle U, Schneider H (1986) The central nervous organization of the motor neurones to a steering muscle in locusts. J Exp Biol 120:403–420

    Google Scholar 

  • Pflüger HJ, Bräunig P, Hustert R (1988) The organization of mechanosensory neuropils in locust thoracic ganglia. Phil Trans R Soc Lond B 321:1–26

    Google Scholar 

  • Pipa RL, Cook EF, Richards AG (1959) Studies on the hexapod nervous system. II. The histology of the thoracic ganglia of the adult cockroach, Periplaneta americana (L.). J Comp Neurol 113:401–433

    PubMed  Google Scholar 

  • Power ME (1948) The thoracico-abdominal nervous system of an adult insect, Drosophila melanogaster. J Comp Neurol 88:347–409

    Google Scholar 

  • Pyle RW (1941) The fibre tracts of the fused thoracic ganglia of the adult Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). Psyche 48:123–128

    Google Scholar 

  • Rind CF (1983a) The organization of flight motoneurons in the moth, Manduca sexta. J Exp Biol 102:239–251

    Google Scholar 

  • Rind CF (1983b) A directionally sensitive motion detecting neurone in the brain of a moth. J Exp Biol 102:253–271

    Google Scholar 

  • Rehder V (1988) A neuroanatomical map of the suboesophageal and prothoracic ganglia of the honey bee (Apis mellifera). Proc R Soc Lond B 235:179–202

    Google Scholar 

  • Seabrook WD (1968) The structure of a pregenital abdominal ganglion of the desert locust Schistocerca gregaria (Forskal). Can J Zool 46:965–980

    Google Scholar 

  • Tyrer NM, Altman JS (1974) Motor and sensory flight neurones in a locust demonstrated using cobalt chloride. J Comp Neurol 157:117–138

    PubMed  Google Scholar 

  • Tyrer NM, Gregory GE (1982) A guide to the neuroanatomy of locust suboesophageal and thoracic ganglia. Phil Trans R Soc Lond B 297:91–123

    Google Scholar 

  • Tyrer NM (1983) Locust flight neurones within the anatomical frame work of the thoracic ganglia. In: Nachtigal W (ed) BIONA-Report 2, Akad Wiss Mainz. Fischer, Stuttgart, pp 105–112

    Google Scholar 

  • Watson AHD (1986) The distribution of GABA-like immunoreactivity in the thoracic nervous system of the locust Schistocerca gregaria. Cell Tissue Res 246:331–341

    Article  Google Scholar 

  • Wigglesworth VB (1957) The use of osmium in the fixation and staining of tissues. Proc R Soc Lond B 147:135–142

    Google Scholar 

  • Wohlers DW, Huber F (1985) Topographical organization of the auditory pathway within the prothoracic ganglion of the cricket Gryllus campestris L.. Cell Tissue Res 239:555–565

    Google Scholar 

  • Zawarzin A (1924) Zur Morphologie der Nervenzentren des Bauchmarks der Insekten. Z Wiss Zool 122:323–434

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suder, F., Wendler, G. Organisation of the thoracic ganglia of the adult sphinx moth Manduca sexta (Insecta, Lepidoptera). Zoomorphology 113, 103–112 (1993). https://doi.org/10.1007/BF00403088

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00403088

Keywords

Navigation