Skip to main content
Log in

Expression of the SOS system in Escherichia coli growing under nitrate respiration conditions

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Induction of several SOS functions by mitomycin C, bleomycin or thermal treatment of a recA441 mutant growing under nitrate respiration conditions was studied in Escherichia coli. Mitomycin C caused inhibition of cell division, induction of prophages and expression of umuC gene but like in aerobically growing cells, it did not trigger the cessation of cell repiration. On the contrary, both recA+ and recA441 cultures either treated with bleomycin or incubated at 42°C failed to induce any of the different SOS functions cited above.

Furthermore, after bleomycin addition or thermal treatment both recA+ and recA441 cultures did not present any variation in the cellular ATP level, contrary to what happens under aerobic growth. The blocking of the expression of some SOS functions under nitrate respiration conditions is not an irreversible process because cells incubated under these anaerobic conditions were able to induce the SOS system when changed to an aerobic medium 30 min after the SOS-inducing treatment had been applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barbé, J., Guerrero, R. & Villaverde, A. (1983a) Further characterization of the expression of SOS functions in recA430 mutants of Escherichia coli. Mutat. Res. 121: 171–175.

    Article  PubMed  Google Scholar 

  • Barbé, J., Vericat, J. A. & Guerrero, R. (1983b) Discriminated induction of SOS functions in Escherichia coli by alkylating agents. J. Gen. Microbiol. 129: 2079–2089

    PubMed  Google Scholar 

  • Barbé, J., Villaverde, A. & Guerrero, R. (1983c) Evolution of cellular ATP concentration after UV-mediated induction of SOS system in Escherichia coli. Biochem. Biophys. Res. Commun. 117: 556–561

    PubMed  Google Scholar 

  • Barbé, J., Vericat, J. A., Cairó, J. & Guerrero, R. (1985) Further characterization of SOS system induction in recBC mutants of Escherichia coli. Mutat. Res. 146: 23–32

    PubMed  Google Scholar 

  • Brent, R. & Ptashne, M. (1981) Mechanism of action of the lexA gene product. Proc. Natl. Acad. Sci. USA. 78: 4204–4208

    PubMed  Google Scholar 

  • Casaregola, S., D'Ari, R. & Huisman, O. (1982) Quantitative evaluation of recA gene expression in Escherichia coli. Mol. Gen. Genet. 185: 430–439

    PubMed  Google Scholar 

  • Castellazi, M. George, J. & Buttin, J. (1972) Prophage induction and cell division in E. coli 1: Further characterization of the thermosensible mutation tif-1 whose expression mimics the effect of UV irradiation. Mol. Gen. Genet. 119: 139–152

    Article  PubMed  Google Scholar 

  • Chapman, A. G., Fall, L. & Atkinson, D. E. (1971) Adenylate energy charge in Escherichia coli during growth and starvation. J. Bacteriol. 108: 1072–1086

    PubMed  Google Scholar 

  • Crooke, S. T. (1981) Mitomycin C. An overview. In: S. T. Crooke & A. W. Prestayco (eds), Cancer and chemotherapy, Vol. 3, pp. 49–60. Academic Press, New York

    Google Scholar 

  • Droffner, M. L. & Yamamoto, N. (1983) Anmerobic cultures of Salmonella typhimurium do not exhibit inducible proteolytic function of the recA gene and recBC function. J. Bacteriol. 156: 962–965

    PubMed  Google Scholar 

  • Eichler, D. C. & Lehman, I. R. (1977) On the role of ATP in phosphodiester bond hydrolysis catalyzed by the recBC deoxyribonuclease of Escherichia coli. J. Biol. Chem. 252: 499–503

    PubMed  Google Scholar 

  • Elledge, S. J. & Walker, G. C. (1983) Proteins required for ultraviolet light and chemical mutagenesis in E. coli: Identification of the products of the umuC locus of Escherichia coli. J. Mol. Biol. 164: 175–192

    PubMed  Google Scholar 

  • Fridovich, I. (1965) Superoxide dismutases. Annu. Rev. Biochem. 44: 147–159

    Article  Google Scholar 

  • Gregory, E. M. & Fridovich, I. (1973) Induction of superoxide dismutase by molecular oxygen. J. Bacteriol. 114: 543–548

    PubMed  Google Scholar 

  • Gudas, L. J. & Pardee, A. B. (1975) Model for regulation of Escherichia coli DNA repair functions. Proc. Natl. Acad. Sci. USA 72: 2330–2334

    PubMed  Google Scholar 

  • Gudas, L. J. & Mount, D. W. (1977) Identifcation of the recA(tif) gene product of Escherichia coli. Proc. Natl. Acad. Sci. USA 74: 5280–5284

    PubMed  Google Scholar 

  • Guerrero, R. & Barbé, J. (1982) Expression of recA-gene dependent SOS functions in Salmonella typhimurium. Antonie van Leeuwenhoek 48: 159–167

    PubMed  Google Scholar 

  • Guerrero, R., Llagostera, M., Villaverde, A. & Barbé, J. (1984) Changes in ATP concentration in Escherichia coli during induction of the SOS system by mitomycin C and bleomycin. J. Gen. Microbiol. 130: 2247–2251

    PubMed  Google Scholar 

  • Howard-Flanders, P. & Theriot, L. (1962) A method for selecting radiation sensitive mutants of Escherichia coli. Genetics 47: 1219–1224

    PubMed  Google Scholar 

  • Howard-Flanders, P. & Theriot, L. (1966) Mutants of Escherichia coli K-12 defective in DNA repair and in genetic recombination. Genetics 53: 1137–1150

    PubMed  Google Scholar 

  • Hutchinson, T. & Stein, J. (1980) Mutagenesis of UV-irradiated lambda phage by host cell irradiation: Induction of Weigle mutagenesis is not an all-or-none process. Mol. Gen. Genet. 177: 207–211

    Article  PubMed  Google Scholar 

  • Little, J. W. & Mount, D. W. (1982) The SOS regulatory system of Escherichia coli. Cell 29: 11–22

    Article  PubMed  Google Scholar 

  • Little, J. W., Mount, D. W. & Yanisch-Perron, C. (1981) Purified lexA protein is a repressor of the recA and lexA genes. Proc. Natl. Acad. Sci. USA 78: 4199–4203

    PubMed  Google Scholar 

  • Miller, J. H. (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Nicholas, D. J. D. & Nason, A. (1957) Determination of nitrate and nitrite. Methods in Enzymology 3: 981–984

    PubMed  Google Scholar 

  • Roberts, J. W. Roberts, C. W. & Craig, N. L. (1978) Escherichia coli recA gene product inactivates phage λ repressor. Proc. Natl. Acad. Sci. USA 75: 2611–2615

    PubMed  Google Scholar 

  • Schumann, J. P., Jones, D. T. & Woods, D. R. (1982) UV light induction of proteins in Bacteriodes fragilis under anaerobic conditions J. Bacteriol. 151: 44–47

    PubMed  Google Scholar 

  • Sebald, M. & Costilow, R. N. (1975) Minimal growth requirements for Clostridium perfringens and isolation of auxotrophic mutants. Appl. Microbiol. 29: 1–6

    PubMed  Google Scholar 

  • Swenson, P. A. & Schenley, R. L. (1973) Respiration, growth and viability of repair-deficient mutants of Escherichia coli after UV irradiation. Int. J. Rad. Biol. 25: 51–60

    Google Scholar 

  • Tanooka, H. (1977) Development and applications of Bacillus subtilis test systems for mutagens, involving DNA-repair deficiency and suppressible auxotrophic mutations. Mutat. Res. 42: 19–32

    PubMed  Google Scholar 

  • Tormo, A., Martínez-Salas, E. & Vicente, M. (1980) Involvement of the ftsA gene product in late stages of the Escherichia coli cell cycle. J. Bacteriol. 141: 806–813

    PubMed  Google Scholar 

  • Witkin, E. M. (1976) Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli. Bacteriol. Rev. 40: 869–907

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbé, J., Llagostera, M., Villaverde, A. et al. Expression of the SOS system in Escherichia coli growing under nitrate respiration conditions. Antonie van Leeuwenhoek 52, 63–74 (1986). https://doi.org/10.1007/BF00402688

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00402688

Keywords

Navigation