Skip to main content
Log in

A note on gauge symmetry breaking

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We show that the breaking of Abelian gauge symmetry implies the existence of dipole singularities in the correlation functions of the (Abelian) Higgs model. We also show that the noninvariance of the Wightman functions does not preclude the implementability of the global gauge symmetry. An explicit example of gauge symmetry breaking (Ferrari's model) is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abers, E. S. and Lee, B. W., Phys. Rep. 9C, 1 (1973).

    Google Scholar 

  2. Fröhlich, J., Morchio, G., and Strocchi, F., Nuclear Phys. B190, 553 (1981).

    Google Scholar 

  3. Kennedy, T. and King, C., Phys. Rev. Lett. 55, 776 (1985).

    Google Scholar 

  4. Streater, R. F. and Wightman, A. S., PCT, Spin and Statistics, and All That, Benjamin, New York, 1964.

    Google Scholar 

  5. Strocchi, F. and Wightman, A. S., J. Math. Phys. 15, 2198 (1974).

    Google Scholar 

  6. Ferrari, R., Nuovo Cimento 19A, 204 (1974).

    Google Scholar 

  7. Moschella, U. and Strocchi, F., Lett. Math. Phys. 19, 143 (1990).

    Google Scholar 

  8. Moschella, U., J. Math. Phys. 31, 2480 (1990).

    Google Scholar 

  9. Morchio, G. and Strocchi, F., Ann. Inst. Henri Poincaré 33A, 251 (1980).

    Google Scholar 

  10. Strocchi, F., Comm. Math. Phys. 56, 57 (1977).

    Google Scholar 

  11. Wigner, E. P., Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra, Academic Press, New York, 1959.

    Google Scholar 

  12. VonNeumann, J., Math. Ann. 104, 570 (1931).

    Google Scholar 

  13. Strocchi, F., Elements of the Quantum Mechanics of Infinite Systems, World Scientific, Singapore, 1985.

    Google Scholar 

  14. Schroer, B., Fortschr. Phys. 11, 1 (1962).

    Google Scholar 

  15. Zwanziger, D., Phys. Rev. D17, 457 (1978).

    Google Scholar 

  16. Zimmermann, W., Comm. Math. Phys. 8, 66 (1968).

    Google Scholar 

  17. Moschella, U., ISAS PhD Thesis, Trieste, 1991.

  18. Moschella, U. and Strocchi, F., IPT-UCL-13-91 preprint. Lett. Math. Phys. 24, 103 (1992).

    Google Scholar 

  19. Narnhofer, H. and Thirring, W., Phys. Lett. 76B, 428 (1978).

    Google Scholar 

  20. Bognar, J., Indefinite Inner Product Spaces, Springer, New York, 1974.

    Google Scholar 

  21. Gelfand, I. M. and Shilov, G. E., Generalized Functions, Vol. 2, Academic Press, New York, 1964.

    Google Scholar 

  22. Reed, M. and Simon, B., Methods of Modern Mathematical Physics, Vols. I and II, Academic Press, New York, 1975.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moschella, U. A note on gauge symmetry breaking. Lett Math Phys 24, 155–163 (1992). https://doi.org/10.1007/BF00402679

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00402679

Mathematics Subject Classifications (1991)

Navigation