Skip to main content
Log in

Development and properties of malignant lymphoma induced by magnesium deficiency in rats

  • Original Papers
  • Experimental Oncology
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Summary

Female wistar rats were fed on an Mg-deficient diet. After 8 to 10 weeks, the thymus glands were strongly degenerated and the number of lymphocytes was reduced, especially in the cortex. Thymus degeneration was associated with a decreased rate of DNA, RNA, and protein biosynthesis and necrosis and phagocytosis of lymphocytes. The degeneration was normalized after feeding on an Mg-rich diet. After 10 or 11 weeks of Mg deficiency, local cell proliferations of immature lymphocytes with a great number of free ribosomes were found in some thymus glands. The local cell proliferations developed into infiltrating tumors without metastases. In lymphoma cells the Na+ and Ca2+ content, the turnover of cellular Na+ and K+, and the aerobic production of CO2 and lactate were increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alcock NW, Shils ME (1974) Serum immunoglobuline G in the magnesium depleted rat. Proc Soc Exp Biol Med 145:855–858

    PubMed  Google Scholar 

  • Alcock NW, Shils ME, Lieberman PH, Erlandson RA (1973) Thymic changes in the magnesium depleted rat. Cancer Res 33:2196–2204

    PubMed  Google Scholar 

  • Alcock NW, Shils ME, Lieberman PH, Erlandson RA (1976) Thymic changes in magnesium depleted rats and a relationship to dietary calcium levels. II. Internat Symposium on Magnesium, Montreal abstracts, p 23

  • Averdunk R, Günther T (1980a) Effect of concanavalin A on intracellular K+ and Na+ concentration and K+ transport of human lymphocytes. Immunobiology 38:132–144

    Google Scholar 

  • Averdunk R, Günther T (1980b) Characterization of the concanavalin A induced increase in lymphocyte cell membrane permeability by furosemide. Immunobiology 38:358–364

    Google Scholar 

  • Averdunk R, Ostapovicz B, Günther T (1975) Die Rolle von cyclischem AMP und Ca bei der Permeabilitätsänderung Mg-arm gewachsener Tumorzellen. Z klin Chem klin Biochem 13:361–366

    PubMed  Google Scholar 

  • Battifora H (1971) Effects of magnesium deficiency on blood cells. Clinical and experimental data. In: Durlach J (ed) I. International Symposium on Magnesium Deficit in Human Pathology. Vittel (p 501)

  • Bois P, Sandborn EB, Messier PE (1969) A study of thymic lymphosarcoma developing in magnesium deficient rats. Cancer Res 29:763–775

    PubMed  Google Scholar 

  • Bossi D, Cittadini A, Wolf F, Milani A, Magalini S, Terranova T (1979) Intracellular calcium and magnesium content and aerobic lactate production in intact Ehrlich ascites tumor cells. FEBS Letters 104:6–12

    Article  PubMed  Google Scholar 

  • Cameron IL, Smith NKR, Pool TB, Sparks RL (1980) Intracellular concentration of sodium and other elements as related to mitogenesis and oncogenesis in vivo. Cancer Res 40:1493–1500

    PubMed  Google Scholar 

  • Carpentieri U, Sordahl LA (1980) Respiratory and calcium transport functions of mitochondria isolated from normal and transformed human lymphocytes. Cancer Res 40:221–224

    PubMed  Google Scholar 

  • Durant S, Homo F, Duval D (1980) Calcium and A 23187-induced cytolysis of mouse thymocytes. Biochem Biophys Res Comm 93:385–391

    PubMed  Google Scholar 

  • Elin RJ (1975) The effect of magnesium deficiency in mice on serum immunoglobulin concentrations and antibody plaque-forming cells. Proc Soc Exp Biol Med 148:620–624

    PubMed  Google Scholar 

  • Fraker PJ, de Pasquale-Jardieu P, Zwickl CM, Luecke RW (1978) Regeneration of T-cell helper function in zinc-deficient adult mice. Proc Nat Acad Sci 75:5660–5664

    PubMed  Google Scholar 

  • Goldstein G, Lau C (1980) Thymopoietin and Immunoregulation. In: Beers RF Jr, Bassett EG (eds) Polypeptide hormones. Raven Press, New York, p 459

    Google Scholar 

  • Goldstein AL, Low TLK, Thurman GB (1980) Thymosin: Basic properties and clinical application in the treatment of immunodeficiency diseases and cancer. In: Beers RF Jr, Bassett EG (eds) Polypeptide hormones. Raven Press New York, p 449

    Google Scholar 

  • Günther T, Averdunk R (1970) K+-Transport und Stoffwechsel von Mg arm gewachsenen Yoshida-Ascitestumorzellen. Z klin Chem klin Biochem 8: 621–625

    PubMed  Google Scholar 

  • Günther T, Averdunk R (1976) Wirkungen des “Ca-Ionophors” X-537 A auf den Elektrolytgehalt und Stoffwechsel von Yoshida-Ascites-Tumorzellen: Ein Modell zur Analyse des Mg-Mangels. J Clin Chem Clin Biochem 14:365–371

    PubMed  Google Scholar 

  • Günther T, Averdunk R (1979) Reduced lectin stimulation of lymphocytes from magnesium-deficient rats. J Clin Chem Clin Biochem 17:51–55

    PubMed  Google Scholar 

  • Iwata T, Incefy GS, Tanaka T, Fernandes G, Menendez-Botet CJ (1978) Low levels of serum thymic factor [FTS] in zinc-deficient A/Jax mice. Fed Proc 37:1827

    Google Scholar 

  • Johnson MA, Weber MJ (1980) Serum stimulation of potassium fluxes, ouabain binding, and sodium fluxes in quiescent chicken embryo fibroblasts. J Cell Physiol 103:363–370

    PubMed  Google Scholar 

  • Kaiser N, Edelman IS (1978) Calcium dependence of ionophore A 23187-induced lymphocyte cytotoxicity. Cancer Res 38:3599–3603

    PubMed  Google Scholar 

  • Lengle EE, Gustin NC, Gonzalez F, Menahan LA, Kemp RG (1978) Energy metabolism in thymic lymphocytes of normal and leukemic AKR mice. Cancer Res 38:1113–1119

    PubMed  Google Scholar 

  • McKeehan WL, Ham RG (1978) Calcium and magnesium ions and the regulation of multiplication in normal and transformed cells. Nature 275:756–758

    PubMed  Google Scholar 

  • Metcalf D (1966) The thymus. Springer, Berlin Heidlberg New York

    Google Scholar 

  • Potter M (1976) Tumors of immunoglobulin producing cells and thymus derived lymphocytes. In: Melchers F., Rajewsky K (eds) The immune system. 27. Mosbacher Colloquium. Springer, Berlin Heidelberg New York, p 141

    Google Scholar 

  • Racker E (1976) Why do tumor cells have a high aerobic glycolysis? J Cell Physiol 89:697–700

    PubMed  Google Scholar 

  • Rayssiguier Y, Larvor P, Augusti Y, Durlach J (1977) Serum proteins in magnesium-deficient rat Ann Biol Anim Bioch Biophys 17:147–152

    Google Scholar 

  • Schilling K, Börnig H, Cumme G, Hoppe H (1980) Effect of magnesium-dependent cell membrane alterations on the transport of K+ in Ehrlich ascites tumor cells. Acta Biol Med Germ 39:177–184

    PubMed  Google Scholar 

  • Schmalbeck J, Willems WR, Dorn F, Günther T (1972) Über den Lipidstoffwechsel im Magnesium-Mangel. Z klin Chem klin Biochem 10:270–274

    PubMed  Google Scholar 

  • Shen SS, Hamamoto ST, Bern HA, Steinhardt RA (1978) Alteration of sodium transport in mouse mammary epithelium associated with neoplastic transformation. Cancer Res 38:1356–1361

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Averdunk, R., Bippus, P.H., Günther, T. et al. Development and properties of malignant lymphoma induced by magnesium deficiency in rats. J Cancer Res Clin Oncol 104, 63–73 (1982). https://doi.org/10.1007/BF00402054

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00402054

Key words

Navigation