## Abstract

Sections 1, 2 and 3 contain the main result, the strong finite axiomatizability of all 2-valued matrices. Since non-strongly finitely axiomatizable 3-element matrices are easily constructed the result reveals once again the gap between 2-valued and multiple-valued logic. Sec. 2 deals with the basic cases which include the important *F*
^{∞}_{i}
from Post's classification. The procedure in Sec. 3 reduces the general problem to these cases. Sec. 4 is a study of basic algebraic properties of 2-element algebras. In particular, we show that equational completeness is equivalent to the Stone-property and that each 2-element algebra generates a minimal quasivariety. The results of Sec. 4 will be applied in Sec. 5 to maximality questions and to a matrix free characterization of 2-valued consequences in the lattice of structural consequences in any language. Sec. 6 takes a look at related axiomatization. problems for finite algebras and matrices. We study the notion of a propositional consequence with equality and, among other things, present explicit axiomatizations of 2-valued consequences with equality.

### Similar content being viewed by others

## References

G. Asser and W. Rautenberg,

*Ein Verfahren zur Axiomatisierung gewisser zweiwertiger Aussagenkalküle*,6 (1960), pp. 303–318.*Zeitschrift für Mathematische Logik und Grundlagen der Mathematik*K. A. Baker,

*Congruence-distributive polynomial reducts of lattices*,9 (1979), pp. 142–145.*Algebra Universalis*J. Berman,

*A proof of Lyndon's finite base theorem*,29 (1980), pp. 229–233.*Discrete Mathematics*D. M. Clark and P. H. Krauss,

*Varieties generated by para-primal algebras*,7 (1977), pp. 93–114.*Algebra Universalis*-,

*Plain para-primal algebras*, to appear in:.*Algebra Universalis*G. Kreisel and J.-L. Krivine,

, Berlin 1972.*Modelltheorie*G. Grätzer,

, 2. edition, Berlin 1979.*Universal algebra*L. Henkin,

*Fragments of the propositional calculus*,14 (1949), pp. 42–48.*The Journal of Symbolic Logic*B. Jónsson,

*Algebras whose congruence lattice are distributive*,21 (1967), pp. 110–121.*Mathematica Scandinavica*J. Łoś and R. Suszko,

*Remarks on sentential logics*,20 (1958), pp. 177–183.*Indagationes Mathematicae*R. C. Lyndon,

*Identities in 2-valued calculi*,71 (1951), pp. 457–465.*Transaction of the American Mathematical Society*A. I. Malcev,

, Berlin 1973.*Algebraic systems*R. McKenzie,

*A finite algebra A with SP {A} not elementary*,8 (1978), pp. 5–7.*Algebra Universalis*A. J. Olshewski,

*Conditional identities in finite groups*,1975, pp. 1000–1003.*Siberian Mathematical Journal*A. E. Pixley,

*Functionally complete algebras generating distributive and permutable classes*,114 (1970), pp. 361–372.*Mathematische Zeitschrift*E. Post,

, Princeton 1941. Reprint New-York 1960.*Two-valued iterative systems of Mathematical Logic*R. W. Quackenbush,

*Algebras with minimal spectrum*,10 (1980), pp. 117–129.*Algebra Universalis*W. Rautenberg,

, Vieweg, Wiesbaden 1979.*Klassische und Nichtklassische Ausagenlogik*I. G. Rosenberg,

*Completeness properties of multiple-valued logic algebras*,(ed. D. C. Rine), North-Holland, Amsterdam 1977.*Computer Science and Multiple-valued logic*A. Selman,

*Completeness of calculi for axiomatically defined classes of algebras*,2 (1972), pp. 20–32.*Algebra Universalis*S. Surma (editor),

, Ossolineum, Wrocław 1973.*Studies in the history of mathematical logic*W. Taylor,

*The fine spectrum of a variety*,5 (1975), pp. 263–303.*Algebra Universalis*R. Wójcicki,

*Matrix approach in methodology of sentential calculi*,32 (1973), pp. 7–37.*Studia Logica*P. Wojtylak,

*Matrix representation for structural strengthenings of a propositional logic*,38 (1979), pp. 263–266.*Studia Logica*—,

*Strongly finite logics*,8 (1979), pp. 99–111.*Bulletin of the Section of Logic*A. Wroński,

*A 3-valued matrix whose consequence is not finitely based*,8 (1979), pp. 68–71.*Bulletin of the Section of Logic*-,

*Consequence operations of 2-element matrices*(Manuscript in Polish).

## Author information

### Authors and Affiliations

## Rights and permissions

## About this article

### Cite this article

Rautenberg, W. 2-Element matrices.
*Stud Logica* **40**, 315–353 (1981). https://doi.org/10.1007/BF00401653

Revised:

Issue Date:

DOI: https://doi.org/10.1007/BF00401653