Skip to main content
Log in

Lipolytic activity of marine bacteria. Influence of NaCl and MgCl2

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Esterase and lipase activity of several marine bacteria was demonstrated using various substrates. NaCl at low molarity slightly increases this activity by changing membrane permeability in living cells. The salt influence is less pronounced with cell-free extracts. Conversely, MgCl2 enhances lipolysis by removing the resulting fatty acids: in this case living cells and cell-free extracts show practically the same activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Balanchard, D. C. and L. Syzdek: Mechanism for the water to air transfer and concentration of bacteria. Science, N. Y. 170, 626–628 (1970)

    Google Scholar 

  • Baxter, R. M.: An interpretation of the effects of salts on the lactic dehydrogenase of Halobacterium salinarium. Can. J. Microbiol. 5, 45–57 (1959)

    Google Scholar 

  • Bayley, S. T. and E. Griffiths: A cell-free amino acid incorporation system from an extremely halophilic bacterium. Biochemistry 7, 2249–2256 (1968)

    Google Scholar 

  • Baylor, E. R. and W. H. Sutcliffe: Dissolved organic matter in sea water as a source of particulate food. Limnol. Oceanogr. 8, 369–371 (1963)

    Google Scholar 

  • Bezdek, H. F. and A. F. Carlucci: Surface concentration of marine bacteria. Limnol. Oceanogr. 17, 566–569 (1972)

    Google Scholar 

  • Brown, A. D.: Aspects of bacterial response to the ionic environment. Bacteriol. Rev. 28, 296–329 (1964)

    Google Scholar 

  • Cazzulo, J. J.: Regulatory properties of enzymes from marine and extremely halophilic bacteria: malic enzyme and citrate synthase. In: Energetics and structure of halophilic micro-organisms, pp 371–376. Ed. by S. R. Caplan and M. Ginzburg. Amsterdam; Elsevier/North Holland Biomedical Press 1978

    Google Scholar 

  • Cheah, K. S.: Effect of K+ and Na+ on the cytochrome oxidase activity of Halobacterium cutirubrum. FEBS Lett. 7, 301–303 (1970)

    Google Scholar 

  • Cooper, S., S. R. Caplan and I. Michaeli: Absorption and transport of Na+-ions in sub-bacterial partiles of Halobacterium halobium. In: Energetics and structure of halophilic microorganisms pp 209–215. Ed. by S. R. Caplan and M. Ginzburg. Amsterdam: Elsevier/North Holland Biomedical Press 1978

    Google Scholar 

  • Edebo, L. and T. Holme: Preparation of biologically active fractions from Salmonella typhimurium. II. Disintegration of pathogenic microorganisms Acta Path. Microbiol. Scand. 51, 173–177 (1960)

    Google Scholar 

  • Garret, N. O.: The organic chemical composition of ocean surface. Deep Sea Res. 14, 221–227 (1966)

    Google Scholar 

  • Genovese, S.: Cicli biogeochimici. EST Mondadori 5a ed. 3, 563–566 (1970)

    Google Scholar 

  • Gerlach, S. A.: In: Marine ecology, vol. I, part. III, pp 1245–1250. Ed. by O. Kinne. New York: Wiley Interscience 1972

    Google Scholar 

  • Gomori, G.: Histochemical localization of true lipase. Proc. Soc. exp. Biol. Med. 72, 697–700 (1949)

    Google Scholar 

  • Hendrie, M. S., W. Hodgkin and J. M. Shewan: The identification, taxonomy and classification of luminous bacteria. J. gen. Microbiol. 64, 151–169 (1970)

    Google Scholar 

  • Kjelleberg, S., B. Norkrans, H. Löfgren and K. Larsson: Surface balance study of the interaction between microorganisms and lipid monolayer at the air/water interface. Appl. environ. Microbiol. 31, 609–611 (1976)

    Google Scholar 

  • Kjelleberg, S. and N. Håkansson: Distribution of lipolytic, proteolytic and amylolytic marine bacteria between the lipid film and the subsurface water. Mar. Biol. 39, 103–109 (1977)

    Google Scholar 

  • Kjelleberg, S., T. A. Stenström and G. Odham. Comparative study of different hydrophobic devices for sampling lipid surface films and adherent microorganisms. Mar. Biol. 53, 21–25 (1979)

    Google Scholar 

  • Lanyi, J. K.: Studies of the electron transport chain of extremely halophilic bacteria. II. Salt dependence of reduced diphosphopyridine nucleotide oxidase. J. Biol. Chem. 244, 2864–2869 (1969a)

    Google Scholar 

  • Lanyi, J. K.: Studies of the electron transport chain of extremely halophilic bacteria. III. Mechanism of the effect of salt on menadione reductase. J. Biol. Chem. 244, 4168–4173 (1969b)

    Google Scholar 

  • Lanyi, J. K.: Transport of cations and aminoacids in Halobacterium halobium. In: Energetics and structure of halophilic microorganisms, pp 415–423. Ed. by S. R. Caplan and M. Ginzburg. Amsterdam: Elsevier/North Holland Biomedical Press 1978

    Google Scholar 

  • Larsen, H.: Halophilism. In: The bacteria, pp 29–342. Ed. by I. Gonsalus and R. Y. Steiner. New York: Academic Press 1962

    Google Scholar 

  • Larsen, H.: Biochemical aspects of extreme halophilism. In: Advances in microbial physiology, pp 87–132. Ed. by A. H. Rose and J. F. Wilkinson. New York: Academic Press 1967

    Google Scholar 

  • Larsson, K., G. Odham and A. Sodergren: On lipid films on the sea. I. A simple method for sampling and studies of composition. Mar. Chem. 2, 49–57 (1974)

    Google Scholar 

  • Leicht, W., M. M. Werber and H. Eisenberg: Purification and characterization of glutamate dehydrogenase from Halobacterium of the Dead Sea. Biochemistry 17, 4004–4010 (1978)

    Google Scholar 

  • Liebl, V., J. G. Kaplan and D. J. Kushner: Regulation of saltdependent enzyme: the aspartate transcarbamylase of an extreme halophile. Can. J. Biochem. 47, 1095–1097 (1969)

    Google Scholar 

  • Lo Curto, R. B.: Influenza della modalità di sterilizzazione e di addizione del glucosio sullo sviluppo dello stafilococco e sulla produzione di lipasi da parte di tale coccacea. Boll. Ist. Sieroter. Milanese 45, 329–337 (1966)

    Google Scholar 

  • MacDonald, R. E. and J. K. Lanyi: Light-induced leucine transport in Halobacterium halobium envelope vescicles: a chemiosmotic system. Biochemistry 14, 2882–2889 (1975)

    Google Scholar 

  • MacLeod, R. A.: The question of the existence of specific marine bacteria. Bacteriol. Rev. 29, 9–23 (1965)

    Google Scholar 

  • Mevarech, M., H. Eisenberg and E. Neumann: Malate dehydrogenase isolated from extremely halophilic bacteria of the Dead Sea. I. Purification and molecular characterization. Biochemistry 16, 3781–3785 (1977)

    Google Scholar 

  • Norberg, P., J. G. Kaplan and D. J. Kushner: Kinetics and regulation of the salt-dependent aspartate transcarbamylase of Halobacterium cutirubrum. J. Bacteriol. 113, 680–686 (1973)

    Google Scholar 

  • Pernice, A. and V. Alonzo: Tween 85 come substrato adatto per la valutazione delle lipasi batteriche. Boll. Ist. Sieroter. Milanese 48, 132–136 (1969)

    Google Scholar 

  • Peterkin, P. I. and P. S. Fitt: Nucleic acid enzymology of extremely halophilic bacteria Halobacterium cutirubrum polynucleotide phosphorylase. Biochem. J. 121, 613–620 (1971)

    Google Scholar 

  • Pratt, D.: Salt requirements for growth and function of marine bacteria. In: Effect of the ocean environment on microbial activities, pp 3–15. Ed. by R. R. Colwell and R. Y. Morita. University Park Press 1974

  • Riley, G. A.: Organic aggregates in sea water and the dynamics of their formation and utilization. Limnol. Oceanogr. 8, 372–381 (1963)

    Google Scholar 

  • Seki, G.: Ecological studies on the lipolytic activity of microorganisms in the Sea of Aburatsubo Inlet. Rec. Oceanogr. Wks. Japan 9, 75–113 (1967)

    Google Scholar 

  • Sieburth, J. Mc. N.: Distribution and activity of oceanic bacteria. Deep Sea Res. 18, 1111–1121 (1971)

    Google Scholar 

  • Sieburth, J. Mc. N., P. J. Willis, K. M. Johnson, C. M. Burney, D. M. Lavoie, D. M. Hinge, K. R. Hinge, D. A. Caron, F. W. French, P. W. Johnson and P. G. Davies: Dissolved organic matter and heterotrophic microneuston in the surface microlayers of the North Atlantic. Science N.Y. 194, 1415–1418 (1976)

    Google Scholar 

  • Sierra, G.: A simple method for the detection of lipolytic activity of microorganisms and some observations on the influence of the contact between cells and fatty substrates. Antonie van Leeuwenhoek 23, 15–22 (1957)

    Google Scholar 

  • Stevenson, J.: The specific requirement for sodium chloride for the active uptake of L-glutamate by Halobacterium salinarium. Biochem. J. 99, 257–260 (1966)

    Google Scholar 

  • Takahashi, I. and N. E. Gibbons: Effect of salt concentration of extra-cellular nucleic acid of Micrococcus halodenitrificans. Can. J. Microbiol. 3, 687–694 (1957)

    Google Scholar 

  • Verne, J., S. Hebert and O. De Charpal: Etude cytochimique de l'apparition de l'activité des estérases au cours du dévelopment chez le rat blanc. C. R. Soc. Biol. 146, 176–179 (1952)

    Google Scholar 

  • Werber, M. M., M. Mevarech, W. Leicht and H. Eisenberg: Structure-function relationships in proteins and enzymes of Halobacterium of the Dead Sea. In: Energetics and structure of halophilic microorganisms, pp 427–443. Ed. by S. R. Caplan and M. Ginzburg. Amsterdam: Elsevier/North Holland Biomedical Press 1978

    Google Scholar 

  • ZoBell, C. E.: Marine microbiology, a monograph on hydrobacteriology, 240 pp. Waltham, Mass.: Chronica Botanica Publishers 1946

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by B. Battaglia, Padova

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruni, V., Maugeri, T. & Alonzo, V. Lipolytic activity of marine bacteria. Influence of NaCl and MgCl2 . Marine Biology 67, 113–119 (1982). https://doi.org/10.1007/BF00401276

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00401276

Keywords

Navigation