Skip to main content
Log in

Splat-quench solidification: estimating the maximum spreading of a droplet impacting a solid surface

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This study investigates the mechanisms that contribute to determining the maximum spreading of a liquid droplet impacting a solid surface in connection with splat-quench solidification. This paper defines two domains, the viscous dissipation domain and the surface tension domain, which are characterized by the Weber and the Reynolds numbers, and that are discriminated by the principal mechanism responsible for arresting the splat spreading. This paper illustrates the importance of correctly determining the equilibrium contact angle (a surface tension characteristic that quantifies the wetting of the substrate) for predicting the maximum spreading of the splat. Conditions under which solidification of the splat would or would not be expected to contribute to terminating the spreading of the splat are considered. However, our a priori assumption is that the effect of solidification on the spreading of a droplet, superheated at impact, is secondary compared to the effects of viscous dissipation and surface tension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

Thermal diffusivity

C s :

Correction factor

C v :

Correction factor

d :

Initial diameter of droplet

D :

Final diameter of splat

E k :

Initial kinetic energy at impact

E s :

Rise in surface tension energy

E v :

Viscous energy dissipated

s :

Terminal thickness of splat

t c :

Spreading time of splat

u :

Velocity of impinging droplet

V :

Volume of splat (droplet)

x :

Space variable

κ:

Madejski's solidification parameter

μ:

dynamic viscosity

φ:

Dissipation function

ϱ:

Density of liquid

σ:

Liquid-vapour surface tension

θe :

Equilibrium contact angle

ξ:

D/d (spreading factor)

Pe :

ud/a (Péclet number)

Re :

ρud/μ (Reynolds number)

We :

ρu 2d/σ (Weber number)

References

  1. H. Jones, Rep. Prog. Phys. 36, (1973) 1425.

    Article  CAS  Google Scholar 

  2. B. H. Kear, B. C. Giessen and M. Cohen, in “Rapidly Solidified Amorphous and Crystalline Alloys”, Materials Research Society Symposia Proceedings, Vol. 8 (North-Holland, New York, 1981).

    Google Scholar 

  3. B. H. Kear and B. C. Giessen, in “Rapidly Solidified Metastable Materials”, Materials Research Society Symposia Proceedings, Vol. 28 (North-Holland, New York, 1984).

    Google Scholar 

  4. M. Tenhover, W. L. Johnson and L. E. Tanner, in “Science and Technology of Rapidly Quenched Alloys”, Materials Research Society Symposia Proceedings, Vol. 80 (Materials Research Society, Pittsburgh, Pennsylvania, 1987).

    Google Scholar 

  5. P. G. Boswell, Metals Forum 2 (1979) 40.

    CAS  Google Scholar 

  6. R. C. Ruhl, Mater. Sci. Engng 1 (1967) 313.

    Article  Google Scholar 

  7. J. Madejski, Int. J. Heat Mass Transfer 19 (1976) 1009.

    Article  Google Scholar 

  8. Idem, ibid. 26 (1983) 1095.

    Article  Google Scholar 

  9. R. McPherson, J. Mater. Sci. 15 (1980) 3141.

    Article  CAS  Google Scholar 

  10. H. Jones, J. Phys. D: Appl. Phys. 4 (1971) 1657.

    Article  CAS  Google Scholar 

  11. E. W. Collings, A. J. Markworth, J. K. McCoy and J. H. Saunders, J. Mater. Sci. 25 (1990) 3677.

    Article  CAS  Google Scholar 

  12. S. Chandra and C. T. Avedisian, in Fall Technical Meeting of the Eastern States Section of the Combustion Institute, Orlando, Florida, December 1990, Paper No. 83.

  13. G. J. Dienes and H. F. Klemm, J. Appl. Phys. 17 (1946) 458.

    Article  CAS  Google Scholar 

  14. A. W. Adamson, “Physical Chemistry of Surfaces”, 4th Edn (Wiley, New York, 1982) pp. 338–340.

    Google Scholar 

  15. S. H. Davis, Trans. ASME: J. Appl. Mech. 50 (1983) 977.

    Article  Google Scholar 

  16. P. G. de Gennes, Rev. Mod. Phys. 57 (1985) 827.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bennett, T., Poulikakos, D. Splat-quench solidification: estimating the maximum spreading of a droplet impacting a solid surface. Journal of Materials Science 28, 963–970 (1993). https://doi.org/10.1007/BF00400880

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00400880

Keywords

Navigation