Skip to main content
Log in

Rheology of non-Newtonian glass-forming melts

Part II Kinetics of relaxation and retardation

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A general formalism describing the kinetics of relaxation and retardation in glass-forming materials is developed. By introducing the real flow behaviour of a particular system into an extended analogue of Maxwell's equation, a set of non-linear relaxational and retardational dependences, applicable to liquids with different structures, is obtained. The Kohlrausch stretched-exponent formula and similar dependences with time-dependent relaxation times are also derived. A comparison with established empirical relations and existing experimental data gives satisfactory coincidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. Morey, “Properties of Glass” (Reinhold, New York. 1954) p. 169.

    Google Scholar 

  2. R. O. Davies and G. O. Jones, Adv. Phys. 2 (1953) 366.

    Article  Google Scholar 

  3. E. Kanai and T. Satoh, J. Phys. Chem.(Jpn) 9 (1954) 417.

    CAS  Google Scholar 

  4. Idem, ibid. 10 (1955) 1002.

    CAS  Google Scholar 

  5. G. Ropke, in “Statisctische Mehanik fur das Nichtgleichgewicht” (Deutscher Verlag, Berlin, 1987) p. 91.

    Google Scholar 

  6. O. V. Mazurin, in “Vitrification” (Nauka, Leningrad, 1986) in Russian.

    Google Scholar 

  7. R. Pascova, I. Gutzow and J. Schmelzer, J. Mater. Sci. 25 (1990) 921.

    Article  Google Scholar 

  8. J. Schmelzer, I. Gutzow and R. Pascova, J. Cryst. Growth 104 (1990) 505.

    Article  CAS  Google Scholar 

  9. I. Gutzow, A. Dobreva and J. Schmelzer, J. Mater. Sci. 28 (1993) 890.

    Article  CAS  Google Scholar 

  10. M. B. Beaver, in “Encyclopedia of Material Science and Engineering”, Vol. 4, “Mechanical Properties of Polymers” (Pergamon Press, Oxford, 1986) p. 2916.

    Google Scholar 

  11. A. Kovacs, J. Aklonis, J. Hutchinson and A. Ramos, J. Polym Sci. 17 (1979) 1097.

    CAS  Google Scholar 

  12. L. Treloar, in “The Physics of Rubber Elasticity” (Clarendon Press, Oxford, 1949).

    Google Scholar 

  13. F. Kohlrausch, Pogg. Ann. Phys. Chem. 6 (1876) 337.

    Article  Google Scholar 

  14. S. M. Rekhson and O. V. Mazurin, J. Amer. Ceram. Soc. 57 (1974) 327.

    Article  CAS  Google Scholar 

  15. E. Jenckel, Z. Electrochem. Angew. Phys. Chem. 43 (1937) 796.

    CAS  Google Scholar 

  16. J. Ribelles, A. R. Greus and R. D. Calleja, Polymer 31 (1990) 223.

    Article  Google Scholar 

  17. A. Tobolsky, P. Powell and H. Eyring, in “Chemistry of High Molecules”, Vol. 2, edited by V. A. Kargin (Inostr. Lit., Moscow, 1948) p. 206, in Russian.

    Google Scholar 

  18. J. Meixner, Kolloid Z. 134 (1953) 3.

    Article  CAS  Google Scholar 

  19. R. Haase, in “Thermodynamik der Irreversiblen Prozesse” (Steinkopf, Darmstadt, 1963).

    Book  Google Scholar 

  20. S. Middleman, in “The Flow of High Polymers. Continuum and Molecular Rheology” (Academic Press, New York, 1962) Ch. 4.

    Google Scholar 

  21. S. Glasstone, K. Laidler and H. Eyring, in “The Theory of Rate Process” (McGraw-Hill, London, 1941) pp. 480, 513.

    Google Scholar 

  22. L. Prandtl, ZAMM 8 (1928) 85.

    Article  Google Scholar 

  23. A. Fraudenthal, in “Elastisches Verhalten von Werkstoffen” (Technik, Berlin, 1955) pp. 109, 191.

    Google Scholar 

  24. T. Ree and H. Eyring, in “Rheology: Theory and Applications”, Vol. 2, edited by F. R. Eirich (Academic Press, New York, 1960) p. 83.

    Google Scholar 

  25. W. Ostwald, Kolloid Z. 47 (1929) 176.

    Article  CAS  Google Scholar 

  26. Idem, ibid. 36 (1925) 99.

    Article  CAS  Google Scholar 

  27. A. Tobolsky and H. Eyring, J. Chem. Phys. 11 (1943) 229.

    Google Scholar 

  28. I. S. Gradstein and I. M. Ryjik, in “Tables of Integrals, Summs, Series and Products”, 4th Edn (Nauka, Moscow, 1962) in Russian.

    Google Scholar 

  29. M. Abramovitz and I. A. Stegun, in “Handbook of Mathematical Functions”, Applied Mathematics Series (NBS, Washington, 1964).

    Google Scholar 

  30. E. Janke, F. Emde and L. Lösch, in “Tafeln höherer Funktionen”, 6th Edn (Teubner, Stutgart, 1960).

    Google Scholar 

  31. S. Lebedev, in “Special Functions and their Applications” (Izd. Rhys. Mat. Lit. Leningrad, 1963) p. 55 in Russian.

    Google Scholar 

  32. O. S. Narayanaswamy, J. Amer. Ser. Soc. 61 (1978) 146.

    CAS  Google Scholar 

  33. Idem, ibid. 64 (1981) 109.

    Google Scholar 

  34. F. H. Stillinger, Phys. Rev. B41 (1990) 2409.

    Article  Google Scholar 

  35. T. S. Chow, Macromolecules 22 (1989) 701.

    Article  CAS  Google Scholar 

  36. E. Jenckel, in “Die Physik der Hochpolymeren”, Vol. 3, edited by A. A. Stuart (Berlin, 1955) p. 620.

  37. G. Goldbolch and G. Rehage, Rheol. Acta 6 (1967) 30.

    Article  Google Scholar 

  38. Zd. Sobotka, in “Rheology of Materials and Engineering Structures” (Academia, Prague, 1984).

    Google Scholar 

  39. J. Schmelzer, I. Gutzow and A. Dobreva, in preparation.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutzow, I., Dobreva, A. & Schmelzer, J. Rheology of non-Newtonian glass-forming melts. Journal of Materials Science 28, 901–908 (1993). https://doi.org/10.1007/BF00400872

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00400872

Keywords

Navigation