Journal of Materials Science

, Volume 28, Issue 4, pp 901–908 | Cite as

Rheology of non-Newtonian glass-forming melts

Part II Kinetics of relaxation and retardation
  • I. Gutzow
  • A. Dobreva
  • J. Schmelzer


A general formalism describing the kinetics of relaxation and retardation in glass-forming materials is developed. By introducing the real flow behaviour of a particular system into an extended analogue of Maxwell's equation, a set of non-linear relaxational and retardational dependences, applicable to liquids with different structures, is obtained. The Kohlrausch stretched-exponent formula and similar dependences with time-dependent relaxation times are also derived. A comparison with established empirical relations and existing experimental data gives satisfactory coincidence.


Polymer Experimental Data Relaxation Time Material Processing Flow Behaviour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Morey, “Properties of Glass” (Reinhold, New York. 1954) p. 169.Google Scholar
  2. 2.
    R. O. Davies and G. O. Jones, Adv. Phys. 2 (1953) 366.CrossRefGoogle Scholar
  3. 3.
    E. Kanai and T. Satoh, J. Phys. Chem.(Jpn) 9 (1954) 417.Google Scholar
  4. 4.
    Idem, ibid. 10 (1955) 1002.Google Scholar
  5. 5.
    G. Ropke, in “Statisctische Mehanik fur das Nichtgleichgewicht” (Deutscher Verlag, Berlin, 1987) p. 91.Google Scholar
  6. 6.
    O. V. Mazurin, in “Vitrification” (Nauka, Leningrad, 1986) in Russian.Google Scholar
  7. 7.
    R. Pascova, I. Gutzow and J. Schmelzer, J. Mater. Sci. 25 (1990) 921.CrossRefGoogle Scholar
  8. 8.
    J. Schmelzer, I. Gutzow and R. Pascova, J. Cryst. Growth 104 (1990) 505.CrossRefGoogle Scholar
  9. 9.
    I. Gutzow, A. Dobreva and J. Schmelzer, J. Mater. Sci. 28 (1993) 890.CrossRefGoogle Scholar
  10. 10.
    M. B. Beaver, in “Encyclopedia of Material Science and Engineering”, Vol. 4, “Mechanical Properties of Polymers” (Pergamon Press, Oxford, 1986) p. 2916.Google Scholar
  11. 11.
    A. Kovacs, J. Aklonis, J. Hutchinson and A. Ramos, J. Polym Sci. 17 (1979) 1097.Google Scholar
  12. 12.
    L. Treloar, in “The Physics of Rubber Elasticity” (Clarendon Press, Oxford, 1949).Google Scholar
  13. 13.
    F. Kohlrausch, Pogg. Ann. Phys. Chem. 6 (1876) 337.CrossRefGoogle Scholar
  14. 14.
    S. M. Rekhson and O. V. Mazurin, J. Amer. Ceram. Soc. 57 (1974) 327.CrossRefGoogle Scholar
  15. 15.
    E. Jenckel, Z. Electrochem. Angew. Phys. Chem. 43 (1937) 796.Google Scholar
  16. 16.
    J. Ribelles, A. R. Greus and R. D. Calleja, Polymer 31 (1990) 223.CrossRefGoogle Scholar
  17. 17.
    A. Tobolsky, P. Powell and H. Eyring, in “Chemistry of High Molecules”, Vol. 2, edited by V. A. Kargin (Inostr. Lit., Moscow, 1948) p. 206, in Russian.Google Scholar
  18. 18.
    J. Meixner, Kolloid Z. 134 (1953) 3.CrossRefGoogle Scholar
  19. 19.
    R. Haase, in “Thermodynamik der Irreversiblen Prozesse” (Steinkopf, Darmstadt, 1963).CrossRefGoogle Scholar
  20. 20.
    S. Middleman, in “The Flow of High Polymers. Continuum and Molecular Rheology” (Academic Press, New York, 1962) Ch. 4.Google Scholar
  21. 21.
    S. Glasstone, K. Laidler and H. Eyring, in “The Theory of Rate Process” (McGraw-Hill, London, 1941) pp. 480, 513.Google Scholar
  22. 22.
    L. Prandtl, ZAMM 8 (1928) 85.CrossRefGoogle Scholar
  23. 23.
    A. Fraudenthal, in “Elastisches Verhalten von Werkstoffen” (Technik, Berlin, 1955) pp. 109, 191.Google Scholar
  24. 24.
    T. Ree and H. Eyring, in “Rheology: Theory and Applications”, Vol. 2, edited by F. R. Eirich (Academic Press, New York, 1960) p. 83.Google Scholar
  25. 25.
    W. Ostwald, Kolloid Z. 47 (1929) 176.CrossRefGoogle Scholar
  26. 26.
    Idem, ibid. 36 (1925) 99.CrossRefGoogle Scholar
  27. 27.
    A. Tobolsky and H. Eyring, J. Chem. Phys. 11 (1943) 229.Google Scholar
  28. 28.
    I. S. Gradstein and I. M. Ryjik, in “Tables of Integrals, Summs, Series and Products”, 4th Edn (Nauka, Moscow, 1962) in Russian.Google Scholar
  29. 29.
    M. Abramovitz and I. A. Stegun, in “Handbook of Mathematical Functions”, Applied Mathematics Series (NBS, Washington, 1964).Google Scholar
  30. 30.
    E. Janke, F. Emde and L. Lösch, in “Tafeln höherer Funktionen”, 6th Edn (Teubner, Stutgart, 1960).Google Scholar
  31. 31.
    S. Lebedev, in “Special Functions and their Applications” (Izd. Rhys. Mat. Lit. Leningrad, 1963) p. 55 in Russian.Google Scholar
  32. 32.
    O. S. Narayanaswamy, J. Amer. Ser. Soc. 61 (1978) 146.Google Scholar
  33. 33.
    Idem, ibid. 64 (1981) 109.Google Scholar
  34. 34.
    F. H. Stillinger, Phys. Rev. B41 (1990) 2409.CrossRefGoogle Scholar
  35. 35.
    T. S. Chow, Macromolecules 22 (1989) 701.CrossRefGoogle Scholar
  36. 36.
    E. Jenckel, in “Die Physik der Hochpolymeren”, Vol. 3, edited by A. A. Stuart (Berlin, 1955) p. 620.Google Scholar
  37. 37.
    G. Goldbolch and G. Rehage, Rheol. Acta 6 (1967) 30.CrossRefGoogle Scholar
  38. 38.
    Zd. Sobotka, in “Rheology of Materials and Engineering Structures” (Academia, Prague, 1984).Google Scholar
  39. 39.
    J. Schmelzer, I. Gutzow and A. Dobreva, in preparation.Google Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • I. Gutzow
    • 1
  • A. Dobreva
    • 1
  • J. Schmelzer
    • 2
  1. 1.Institute of Physical ChemistryBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Sektion PhysikUniversität RostockRostockGermany

Personalised recommendations