Skip to main content
Log in

Rheology of non-Newtonian glass-forming melts

Part I Flow-stress relations

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The stress-induced flow of non-Newtonian glass-forming systems is analysed in order to obtain a general algorithm for describing the kinetics of relaxation and retardation in glass-forming melts. It is shown that the existing empirical relations for plastic, pseudoplastic and dilatant flow can be derived in the framework of the Prandtl-Eyring potential barrier model, which is extended in order to include dilatant effects. The advantages and shortcomings of this molecular model are considered using experimental evidence on the flow of organic polymers, inorganic glasses and metal alloy glass-formers. It is shown that the mathematical formalism following from the potential barrier model can be conveniently used in order to derive the non-linear kinetics of relaxation of simple and polymer glass-forming melts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Morey, in “Properties of Glass” (Reinhold, New York, 1954) p. 169.

    Google Scholar 

  2. M. B. Beaver, in “Encyclopedia of Material Science and Engineering”, Vol. 4, “Mechanical Properties of Polymers” (Pergamon Press, Oxford, 1986) p. 2916.

    Google Scholar 

  3. O. V. Mazurin, in “Vitrification” (Nauka, Leningrad, 1986) in Russian.

    Google Scholar 

  4. A. Kovacs, J. Aklonis, J. Hutchinson and A. Ramos, Polym. Sci. 17 (1979) 1097.

    CAS  Google Scholar 

  5. L. Treloar, in “The Physic of Rubber Elasticity” (Clarendon Press, Oxford, 1949).

    Google Scholar 

  6. F. Kohlrausch, Pogg. Ann. Phys. Chem. 8 (1876) 332.

    Google Scholar 

  7. S. M. Rekhson and O. V. Mazurin, J. Amer. Ceram. Soc. 57 (1974) 327.

    Article  CAS  Google Scholar 

  8. T. S. Chow, J. Mater. Sci. 25 (1990) 957.

    Article  CAS  Google Scholar 

  9. G. Goldbach and G. Rehage, Reol. Acta 6 (1967) 30.

    CAS  Google Scholar 

  10. E. Jenckel, Z. Electrochem. Angew. Phys. Chem. 43 (1937) 796.

    CAS  Google Scholar 

  11. E. Jenckel, in “Die Physik der Hochpolymeren”, edited by A. A. Stuard, 3rd Edn (Springer Verlag, Berlin, 1955) p. 620.

    Google Scholar 

  12. E. G. Vostroknutov and G. V. Vinogradov, in “Rheological Foundations of Polymer Processing” (Izd. Chimia, Moscow, 1980) p. 16. in Russian.

    Google Scholar 

  13. A. Tobolsky, P. Powell and H. Eyring, in “Chemistry of High Molecules N2”, edited by V. A. Kargin (Inostr. Lit., Moscow, 1948) p. 206, in Russian.

    Google Scholar 

  14. M. Doi, J. Polym. Sci. Polym. Phys. 18 (1980) 1005.

    Article  CAS  Google Scholar 

  15. Idem, J. Polym. Sci. Polym. Lett. 19 (1981) 265.

    Article  CAS  Google Scholar 

  16. I. Gutzow, A. Dobreva and J. Schmelzer, J. Mater. Sci. 28 (1993) 901.

    Article  CAS  Google Scholar 

  17. R. Houwink, in “Elastizitat, Plasticitat und Struktur der Materie” (Verl. Th. Steinkopff, Dresden, 1957) p. 69.

    Google Scholar 

  18. T. Alfrey, in “Mechanical Behaviour of High Polymers” (Academic Press, New York, 1948) Ch. 2.

    Google Scholar 

  19. S. Middlemann, in “The Flow of High Polymers” (Academic Press, New York, 1962) Ch. 4.

    Google Scholar 

  20. G. Vinogradov and A. Malkin, “Reology of Polymers” (Chimia, Moscow, 1977) p. 150, in Russian.

    Google Scholar 

  21. L. Prandtl, ZAMM 8 (1928) 85.

    Article  Google Scholar 

  22. A. Freudenthal, in “Inelastisches Verhalten von Werkstoffen” (Techn, Berlin, 1955) pp. 109, 191.

    Google Scholar 

  23. S. Glasstone, K. Laidler and H. Eyring, in “The Theory of Rate Processes” (McGraw-Hill, London, 1941) pp. 480, 513.

    Google Scholar 

  24. W. Kauzmann and H. Eyring, J. Amer. Chem. Soc. 66 (1940) 3113.

    Article  Google Scholar 

  25. T. Ree and H. Eyring, in “Rheology: Theory and Applications”, Vol. 2, edited by F. R. Eirich (Academic Press, New York, 1960) p. 83.

    Google Scholar 

  26. J. H. Li and D. R. Uhlmann, J. Non-Cryst. Solids 3 (1970) 127.

    Article  Google Scholar 

  27. M. Goldstein, J. Chem. Phys. 51 (1969) 3728.

    Article  CAS  Google Scholar 

  28. F. Bueche, in “Physical Properties of High Polymers” (Interscience, New York, 1962) p. 70.

    Google Scholar 

  29. W. Grassley, in “Entanglement Concept in Polymer Rheology”, Advances in Polymer Science, Vol. 16 (Springer, Berlin, 1974) p. 26.

    Google Scholar 

  30. M. Doi and S. F. Edwards, J. Chem. Soc. Farad. Trans. 2 74 (1978) 1789.

    Article  CAS  Google Scholar 

  31. E. Janke, F. Emde and L. Losch, in “Tafeln hoherer Funktionen” 6 Edn. (Teubner, Stuttgart, 1960).

    Google Scholar 

  32. R. V. Torner, in “Theory of Polymer Processing” (Chimia, Moscow, 1972) p. 47, in Russian.

    Google Scholar 

  33. W. Ostwald, Kolloid Z. 47 (1929) 176.

    Article  CAS  Google Scholar 

  34. Idem, ibid. 36 (1925) 99.

    Article  CAS  Google Scholar 

  35. W. L. Willkinson, in “Non Newtonian Fluids, Fluid Mechanics, Mixing and Heat Transfer” (Pergamon Press, London, 1960) Ch. 1.

    Google Scholar 

  36. G. M. Bartenev, Vysoko Moleculiarnie Soedinenia 6 (1964) 2155.

    CAS  Google Scholar 

  37. D. M. Heyes, J. J. Kim, C. J. Montro and T. A. Litovitz, J. Chem. Phys. 73 (1980) 3987.

    Article  CAS  Google Scholar 

  38. J. R. Partington, in “An Advanced Treatise on Physical Chemistry”, Vol. 2 (Longmans Green, London, 1955) p. 43.

    Google Scholar 

  39. A. Dobreva, D. Georgiev, A. Nikolov and I. Gutzow, paper submitted for publication.

  40. R. Wäsche and R. Brückner, ibid. 27 (1986) 80.

  41. K. Russew and I. Stoyanova, J. Mater. Sci. Engng A123 (1990) 80.

    Google Scholar 

  42. N. E. Gul and V. N. Kuleznev, in “Structure and Mechanical Properties of Polymers” (Vish. Shkola, Moscow, 1966) p. 171, in Russian.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutzow, I., Dobreva, A. & Schmelzer, J. Rheology of non-Newtonian glass-forming melts. Journal of Materials Science 28, 890–900 (1993). https://doi.org/10.1007/BF00400871

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00400871

Keywords

Navigation