Skip to main content
Log in

Function and survival of intrasplenic islet autografts in dogs

  • Originals
  • Published:
Diabetologia Aims and scope Submit manuscript

Summary

Successful transplantation of isolated islets of Langerhans has been reported in large mammals, including man, but metabolic control has not been well-established. We studied the glucose and islet hormone response to fasting, i. v. glucose bolus infusion, i.v. arginine bolus infusion during a 35-mmol/l hyperglycaemic clamp, mixed meals, and i. v. insulin-induced hypoglycaemia up to 3 years after intrasplenic islet autotransplantation in six pancreatectomised dogs. The individual postprandial insulinogenic index (ratio of 2-h postprandial insulin to glucose levels) at 1 month post-transplant, predicted (r=0.99) the time to functional graft failure (6–175 weeks). Metabolic studies at 6 months post-transplant in four dogs demonstrated normal fasting glucose and hormone levels, except for reduced pancreatic polypeptide levels. Intravenous glucose and arginine-stimulated insulin were reduced to 15% of preoperative values. In contrast, postprandial normoin-sulinaemia was observed — albeit with moderate hyperglycaemia (approximately 10 mmol/l). Postprandial glucagon and glucose-dependent insulinotropic polypeptide (GIP) had increased. Comparison of the post-transplant insulin responses to a meal and to intravenous challenges demonstrated maximal stimulation of the graft by the meal. Post-transplant pancreatic polypeptide responses to a meal and i.v. arginine were severely reduced, and no pancreatic polypeptide response to i.v. insulin-induced hypoglycaemia was observed — indicating absence of cholinergic reinnervation. Thus, glucose regulation and both the insulin secretory capacity and life expectancy of islet grafts were best documented by meal testing. Tentatively, a postprandial hyperglycaemia-enhanced incretin effect of glucose-dependent insulinotropic polypeptide and other gut hormones may account for the difference in the insulin response to i. v. glucose and a meal. Aside from the reduced insulin secretory capacity, both a deranged pulsatile delivery of insulin, hyperglucagonaemia, and pancreatic polypeptide deficiency may have been conducive to glucose intolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

IEq:

Islet equivalent

IVGTT:

intravenous glucose tolerance test

GIP:

glucose-dependent insulinotropic polypeptide

PP:

pancreatic polypeptide

RIA:

radioimmunoassay

References

  1. Hering BJ, Browatzki CC, Schultz A, Bretzel RG, Federlin KF (1993) Clinical islet transplantation — registry report, accomplishments in the past and future research needs. Cell Transplantation 2: 269–282

    PubMed  Google Scholar 

  2. Alejandro R, Cutfield RG, Shienvold FL et al. (1986) Natural history of intrahepatic canine islet cell autografts. J Clin Invest 78: 1339–1348

    PubMed  Google Scholar 

  3. Kaufman DB, Morel Ph, Field MJ, Munn SR, Sutherland DER (1990) Purified canine islet autografts: functional outcome as influenced by islet number and implantation site. Transplantation 50: 385–391

    PubMed  Google Scholar 

  4. Warnock GL, Rajotte RV (1988) Critical mass of purified islets that induce normoglycaemia after implantation into dogs. Diabetes 37: 467–470

    PubMed  Google Scholar 

  5. Warnock GL, Ao Z, Cattral MS, Dabbs KD, Rajotte RV (1992) Experimental islet transplantation in large animals. In: Ricordi C (ed) Pancreatic islet cell transplantation. R. G. Landes Company, Austin, pp 261–278

    Google Scholar 

  6. Schwartz TW (1983) Pancreatic polypeptide: a hormone under vagal control. Gastroenterology 85: 1411–1425

    PubMed  Google Scholar 

  7. Van der Burg MPM, Guicherit OR, Frölich M, Scherft JP, Bruijn JA, Gooszen HG (1994) Impact of donor-related variables on islet isolation outcome in dogs. Diabetologia 37: 111–114

    PubMed  Google Scholar 

  8. Van der Burg MPM, Guicherit OR, Frölich M et al. (1994) Assessment of islet isolation efficacy in dogs. Cell Transplantation 3: 91–101

    PubMed  Google Scholar 

  9. Van der Burg MPM, Gooszen HG, Guicherit OR et al. (1989) Contribution of partial pancreatectomy, systemic hormone delivery and duct obliteration to glucose regulation in canine pancreas: importance in pancreas transplantation. Diabetes 38: 1082–1089

    PubMed  Google Scholar 

  10. Kuzio M, Dryburgh JR, Malloy KM, Brown JC (1974) Radioimmunoassay for gastric inhibitory polypeptide. Gastroenterology 66: 357–364

    PubMed  Google Scholar 

  11. Ebert R, Illmer K, Creutzfeldt W (1979) Release of gastric inhibitory polypeptide (GIP) by intraduodenal acidification in rats and humans and abolishment of the incretin effect of acid by GIP-antiserum in rats. Gastroenterology 76: 515–525

    PubMed  Google Scholar 

  12. Van Suylichem PTR, Strubbe JH, Houwing H, Wolters GHJ, Van Schilfgaarde R (1994) Rat islet isograft function: effect of graft volume and transplantation site. Transplantation 57: 1010–1017

    PubMed  Google Scholar 

  13. Kneteman NM, Warnock GL, Evans MG, Nason RW, Rajotte RV (1990) Prolonged function of canine pancreatic fragments autotransplanted to the spleen by venous reflux. Transplantation 49: 679–681

    PubMed  Google Scholar 

  14. Gray DWR (1989) The role of exocrine tissue in pancreatic islet transplantation. Transplant Int 2: 41–45

    Google Scholar 

  15. Bonner-Weir S, Deery D, Leahy JL, Weir GC (1989) Compensatory growth of pancreatic Β-cells in adult rats after short-term glucose infusion. Diabetes 38: 49–53

    PubMed  Google Scholar 

  16. Montana E, Bonner-Weir S, Weir GC (1992) Beta-cell mass falls progressively when hyperglycemia persists after islet transplantation. Transplant Proc 24: 2996–2996

    PubMed  Google Scholar 

  17. Jansson L, Korsgren O, Sandier S, Andersson A (1990) Influence of persistent hyperglycemia on transplanted pancreatic islets. Horm Metab Res 25[Suppl]: 137–142

    Google Scholar 

  18. Ward WK, Bolgiano DC, McKnight B, Halter JB, Porte D (1984) Diminished B cell secretory capacity in patients with noninsulin-dependent diabetes mellitus. J Clin Invest 74: 1318–1328

    PubMed  Google Scholar 

  19. Ward WK, Wallum BJ, Beard JC, Taborsky J, Porte D (1988) Reduction of glycemic potentiation: sensitive indicator of Β-cell loss in partially pancreatectomized dogs. Diabetes 37: 723–729

    PubMed  Google Scholar 

  20. Nauck MA, Siegel EG, Creutzfeldt W (1991) Prolonged maximal secretion of insulin secretion in healthy subjects does not provoke preferential release of proinsulin. Pancreas 6: 645–652

    PubMed  Google Scholar 

  21. Ebert R (1990) Gut signals for islet hormone release. Eur J Clin Invest 20[Suppl 1]: S20–S26

    PubMed  Google Scholar 

  22. Van der Burg MPM, Guicherit OR, Scherft JP, Lemkes HHPJ, Frölich M, Gooszen HG (1992) Postprandial performance after canine islet transplantation: the importance of gut factors. Neth J Med 41: 25A (Abstract)

    Google Scholar 

  23. Strubbe JH, Steffens AB (1993) Neural control of insulin secretion. Horm Metab Res 25: 507–512

    PubMed  Google Scholar 

  24. Korsgren O, Andersson A, Jansson L, Sundler F (1992) Reinnervation of syngeneic mouse pancreatic islets transplanted into renal subcapsular space. Diabetes 41: 130–135

    PubMed  Google Scholar 

  25. Madureira MLC, Adolfo A, Dias J, Sebe M, Carvalhais HA, von Hafe P (1985) Reinnervation of the endocrine pancreas after autotransplantation of pancreatic fragments in the spleen of the dog: a morphofunctional study. World J Surg 9: 335–347

    PubMed  Google Scholar 

  26. Weigle DS (1987) Pulsatile secretion of fuel-regulatory hormones. Diabetes 36: 764–775

    PubMed  Google Scholar 

  27. Chou H, Ipp E (1990) Pulsatile insulin secretion in isolated rat islets. Diabetes 39: 112–117

    PubMed  Google Scholar 

  28. Alejandro R, Mintz DH (1991) Persistence of oscillatory insulin secretion in denervated islet cell autografts. Transplantation 52: 574–576

    PubMed  Google Scholar 

  29. Paolisso G, Salvatore T, Sgambato S, Torella R, Varricchio M, D'Onofrio F (1990) Metabolic effects of pulsatile insulin infusion in the elderly. Acta Endocrinol 123: 19–23

    PubMed  Google Scholar 

  30. Finegood DT, Warnock GL, Kneteman NM, Rajotte RV (1989) Insulin sensitivity and glucose effectiveness in long-term islet-autotransplanted dogs. Diabetes 38[Suppl 1]: 189–191

    PubMed  Google Scholar 

  31. Botha JL, Vinik AI, Child PT (1978) Gastric inhibitory polypeptide in acquired pancreatic diabetes: effects of insulin treatment. J Clin Endocrinol Metab 47: 543–549

    PubMed  Google Scholar 

  32. Creutzfeldt W, Ebert R (1986) The enteroinsular axis. In: Go VLW (ed) The exocrine pancreas. Raven Press, New York, pp 333–346

    Google Scholar 

  33. Owyang C (1986) Endocrine changes in pancreatic insufficiency. In: Go VLW (ed) The exocrine pancreas. Raven Press, New York, pp 577–585

    Google Scholar 

  34. Dinneen S, Alzaid A, Turk D, Rizza R (1995) Failure of glucagon suppression contributes to postprandial hyperglycemia in IDDM. Diabetologia 38: 337–343

    Article  PubMed  Google Scholar 

  35. Sun YS, Brunicardi FC, Druck P et al. (1986) Reversal of abnormal glucose metabolism in chronic pancreatitis by administration of pancreatic polypeptide. Am J Surg 151: 130–140

    Article  PubMed  Google Scholar 

  36. Seymour NE, Brunicardi FC, Chaiken RL et al. (1988) Reversal of abnormal glucose production after pancreatic resection by pancreatic polypeptide administration in man. Surgery 104: 119–129

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Burg, M.P.M., Guicherit, O.R., Jansen, J.B.M.J. et al. Function and survival of intrasplenic islet autografts in dogs. Diabetologia 39, 37–44 (1996). https://doi.org/10.1007/BF00400411

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00400411

Key words

Navigation