Skip to main content

The contribution of naturally labelled 13C fructose to glucose appearance in humans

Summary

Among monosaccharides, fructose has a small hyperglycaemic effect. In order to better explain the mechanisms which cause this metabolic property, we used tracers labelled with stable isotopes (deuterated glucose and naturally 13C labelled fructose) to quantify the overall glucose appearance, the rate of appearance in plasma of the 13C glucose synthesized from fructose, and the fructose oxidation in vivo in man during a 6-h period following ingestion of 0.5 and 1 g · kg−1 fructose. Fructose had a very small effect on overall glucose appearance (NS). During the 6 h of the study, it was found that the overall glucose appearance was 0.87±0.06 and 0.89±0.06 g · kg−1 (NS). The amount of glucose synthesized from fructose was 0.27±0.04 and 0.51±0.03 g · kg−1 (p<0.01) representing 31% and 57% of overall glucose appearance (p<0.01); the non-fructose glucose production was 0.60±0.02 and 0.38±0.03 g · kg−1 (p<0.05) after the 0.5 and 1 g · kg−1 load, respectively. Fructose oxidation was 0.28±0.03 and 0.59±0.07 g · kg−1 after the 0.5 and 1 g · kg−1 load respectively (p<0.01) representing 56% and 59% of the fructose loads (NS). These data show that the low hyperglycaemic effect of fructose is explained by its very small effect on overall glucose appearance and that fructose has a sparing effect on glucose metabolism.

References

  1. Economic Research Service, USDA (1989) Sugar and sweeteners. Situation and outlook report yearbook. US Government Printing Office, Washington, D.C.

    Google Scholar 

  2. Van den Berghe G (1986) Fructose: metabolism and short-term effects on carbohydrate and purine metabolic pathways. Prog Biochem Pharmacol 21: 1–32

    Google Scholar 

  3. Bantle J (1989) Clinical aspects of sucrose and fructose metabolism. Diabetes Care 12: 56–61

    PubMed  Google Scholar 

  4. Henry RR, Crapo PA (1991) Current issues in fructose metabolism. Ann Rev Nutr 11: 21–39

    Article  Google Scholar 

  5. Björkman O, Gunnarson R, Hagström E, Felig P, Wahren J (1989) Splanchnic and renal exchange of infused fructose in insulin-deficient type 1 diabetic patients and healthy controls. J Clin Invest 83: 52–59

    PubMed  Google Scholar 

  6. Radziuk J, Norwich KH, Vranic M (1978) Experimental validation of measurements of glucose turnover in nonsteady state. Am J Physiol 234: E84-E93

    PubMed  Google Scholar 

  7. Tissot S, Normand S, Guilluy R et al. (1990) Use of a new gas chromatograph isotope ratio mass spectrometer to trace exogenous 13C labelled glucose at a very low level of enrichment in man. Diabetologia 33: 449–456

    PubMed  Google Scholar 

  8. Normand S, Pachiaudi C, Khalfallah Y, Guilluy R, Mornex R, Riou JP (1992) 13C appearance in plasma glucose and breath CO2 during feeding with naturally 13C-enriched starchy food in normal humans. Am J Clin Nutr 55: 430–435

    PubMed  Google Scholar 

  9. Bergmeyer HU, Bergmeyer J, Graßl M (1988) Methods of enzymatic analysis, 3 rd edn, vol VI. Verlag Chemie, Weinheim

    Google Scholar 

  10. Laville M, Riou JP, Beylot M et al. (1983) Mesure des acides gras libres plasmatiques par méthode enzymatique. Lyon Med 249: 67–70

    Google Scholar 

  11. Beylot M, Riou JP, Bienvenu F, Mornex R (1980) Increased ketonaemia in hyperthyroidism: evidence for a beta adrenergic mechanism. Diabetologia 19: 505–510

    Article  PubMed  Google Scholar 

  12. Bier DM, Leake RD, Haymond MW et al. (1977) Measurement of “true” glucose production rats in infancy and childhood with 6-6 dideuteroglucose. Diabetes 26: 1016–1023

    PubMed  Google Scholar 

  13. Laville M, Riou JP, Bougnères PF et al. (1985) Glucose metabolism in experimental hyperthyroidism: intact in vivo sensitivity to insulin with abnormal binding and increased glucose turnover. J Clin Endocrinol Metab 58: 960–965

    Google Scholar 

  14. Schoeller DA, Schneider JF, Solomans NW, Watkins JB, Klein PD (1977) Clinical diagnosis with the stable isotope 13C in CO2 breath tests methodology and fundamental considerations. J Lab Clin Med 90: 412–421

    PubMed  Google Scholar 

  15. Steele R, Wall JS, De Bodo RC, Altszuler N (1956) Measurement of size and turn over rate of body glucose pool by the isotope dilution method. Am J Physiol 187: 15–24

    PubMed  Google Scholar 

  16. De Bodo RC, Steele R, Altszuler N, Dunn A, Bishop JS (1963) On the hormonal regulation of carbohydrate metabolism: studies with 14C glucose. Recent Prog Horm Res 19: 445–448

    PubMed  Google Scholar 

  17. Proietto J, Rohner-Jeanrenaud F, Ionescu E, Terretaz J (1987) Non steady state measurement of glucose turnover in rats by a one-compartment model. Am J Physiol 252: E77-E84

    PubMed  Google Scholar 

  18. Abumrad NN, Cherrington AD, Williams PE, Lacy WW, Rabin D (1982) Absorption and disposition of a glucose load in the conscious dog. Am J Physiol 242: E398-E406

    PubMed  Google Scholar 

  19. Mosora F, Lefebvre P, Pirnay F, Lacroix M, Luyckx A, Duchesne J (1976) Quantitative evaluation of the oxidation of an exogenous glucose load using naturally labelled 13C glucose. Metabolism 25: 1575–1582

    Article  PubMed  Google Scholar 

  20. Wolfe RR (1984) Tracers in metabolic research. Alan R. Liss, Inc, New York

    Google Scholar 

  21. Keller U, Froesch ER (1972) Vergleichende Untersuchungen über den Stoffwechsel von Xylit, Sorbit und Fruktose beim Menschen. Schweiz Med Wschr 102: 1017–1022

    PubMed  Google Scholar 

  22. Atwell ME, Waterhouse C (1971) Glucose production from fructose. Diabetes 20: 193–199

    PubMed  Google Scholar 

  23. Nilsson LH, Hultman E (1974) Liver and muscle glycogen in man after glucose and fructose infusion. Scand J Clin Lab Invest 33: 5–10

    PubMed  Google Scholar 

  24. Ruderman NB, Toews CJ, Shafrir E (1969) Role of free fatty acids in glucose homeostasis. Arch Intern Med 123: 299–313

    Article  PubMed  Google Scholar 

  25. Boden G, Jadali F (1991) Effects of lipid on basal carbohydrate metabolism in normal men. Diabetes 40: 686–692

    PubMed  Google Scholar 

  26. Fanelli CG, De Feo P, Porcellati F et al. (1992) Adrenergic mechanisms contribute to the late phase of hypoglycemic glucose counterregulation in humans by stimulating lipolysis. J Clin Invest 89: 2005–2013

    PubMed  Google Scholar 

  27. Segebarth C, Grivegnée AR, Longo R, Luyten PR, den Hollander JA (1991) In vivo monitoring of fructose metabolism in the human liver by means of 31P magnetic resonance spectroscopy. Biochimie 73: 105–108

    PubMed  Google Scholar 

  28. Massicotte D, Peronnet F, Allah C, Hillaire-Marcel C, Ledoux M, Brisson G (1986) Metabolic response to [13C] glucose and [13C] fructose ingestion during exercise. J Appl Physiol 31: 1180–1184

    Google Scholar 

  29. Wolfe BM, Ahuja SP, Marliss EB (1975) Effects of intravenously administered fructose and glucose on splanchnic amino acid and carbohydrate metabolism in hypertriglyceridemic men. J Clin Invest 56: 970–977

    PubMed  Google Scholar 

  30. Mendeloff AI, Weichelbaum TE (1953) Role of the human liver in the assimilation of intravenously administred fructose Metab Clin Exp 2: 450–458

    PubMed  Google Scholar 

  31. Froesch ER, Ginsberg JL (1962) Fructose metabolism in adipose tissue. I. Comparison of fructose and glucose metabolism in epididymal adipose tissue of normal rats. J Biol Chem 237: 3317–3324

    PubMed  Google Scholar 

  32. Rumessen JJ, Gudmand-Høyer E (1988) Functional bowel disease malabsorption and abdominal distress after ingestion of fructose, sorbitol, and fructose-sorbitol mixtures. Gastroenterology 95: 694–700

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Delarue, J., Normand, S., Pachiaudi, C. et al. The contribution of naturally labelled 13C fructose to glucose appearance in humans. Diabetologia 36, 338–345 (1993). https://doi.org/10.1007/BF00400238

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00400238

Key words

  • Fructose
  • glucose
  • stable isotopes
  • [13C]
  • mass spectrometry
  • nutrition
  • human