Skip to main content

Advertisement

Log in

Techniques for genetic engineering in mycobacteria

Alternative host strains, DNA-transfer systems and vectors

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The study of mycobacterial genetics has experienced quick technical developments in the past ten years, despite a relatively slow start, caused by difficulties in accessing these recalcitrant species. The study of mycobacterial pathogenesis is important in the development of new ways of treating tuberculosis and leprosy, now that the emergence of antibiotic-resistant strains has reduced the effectiveness of current therapies. The tuberculosis vaccine strain M. bovis BCG might be used as a vector for multivalent vaccination. Also, non-pathogenic mycobacterial strains have many possible biotechnological applications. After giving a historical overview of methods and techniques, we will discuss recent developments in the search for alternative host strains and DNA transfer systems. Special attention will be given to the development of vectors and techniques for stabilizing foreign DNA in mycobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aldovini, A., Husson, R.N., and Young, R.A. (1993) The uraA locus and homologous recombination in Mycobacterium bovis BCG. J Bacteriol 175: 7282–7289

    PubMed  Google Scholar 

  • Anes, E., Portugal, I., and Moniz-Pereira, J. (1992) Insertion into the Mycobacterium smegmatis genome of the aph gene through lysogenization with the temperate mycobacteriophage Ms6. FEMS Microbiol Lett 95: 21–26

    Google Scholar 

  • Barksdale, L., and Kim, K.-S. (1977) Mycobacterium. Bacteriol Rev 41: 217–372

    PubMed  Google Scholar 

  • Baulard, A., Jourdan, C, Mercenier, A., and Locht, C. (1992) Rapid mycobacterial plasmid analysis by electroduction between Mycobacterium spp. and Escherichia coli. Nucl Acids Res 20: 4105

    PubMed  Google Scholar 

  • Bercovier, H., Kafri, O., and Sela, S. (1986) Mycobacteria possess a surprisingly small number of ribosomal RNA genes in relation to the size of their genome. Biochem Biophys Res Comm 136: 1136–1141

    PubMed  Google Scholar 

  • Biob, M. J., and Cohen, S.N. (1982) Gene expression in Streptomyces: construction and application of promoter-probe vectors in Streptomyces lividans. Mol Gen Genet 187: 265–277

    PubMed  Google Scholar 

  • Bloch, H., Walter, A., and Yamamura, Y. (1959) Failure of deoxyribonucleic acid from mycobacteria to induce bacterial transformation. Am Rev Res Dis 80: 911

    Google Scholar 

  • Bloom, B.R., and Murray, C.J.L. (1992) Tuberculosis: commentary on a reemergent killer. Science 257: 1055–1064

    PubMed  Google Scholar 

  • Chater, K.F., and Hopwood, D.A. (1989) Cloning and molecular analysis of bacterial genes. In: Genetics of bacterial diversity. (Hopwood, D.A., and Chater, K.F., eds.), pp. 53–67. Academic Press, London, UK

    Google Scholar 

  • Cirillo, J.D., Weisbrod, T.R., and JacobsJr., W.R. (1993) Efficient electrotransformation of Mycobacterium smegmatis. BioRad Bull 1360: 1–4

    Google Scholar 

  • Connell, N.D., Medina-Acosta, E., McMaster, W.R., Bloom, B.R., and Russel, D.G. (1993) Effective immunization against cutaneous leishmaniasis with recombinant bacille Calmette-Guerin expressing the Leishmania surface proteinase gp63. Proc Natl Acad Sci USA 90: 11473–11477

    PubMed  Google Scholar 

  • Crawford, J.T., and Bates, J.H. (1979) Isolation of plasmids from mycobacteria. Inf Immun 24: 979–981

    Google Scholar 

  • Crawford, J.T., Cave, M. D., and Bates, J.H. (1981) Evidence for plasmid-mediated restriction-modification in Mycobacterium avium-intracellulare. J Gen Microbiol 127: 333–338

    PubMed  Google Scholar 

  • Crawford, J.T., and Bates, J.H. (1984) Restriction enconuclease roapping and cloning of Mycobacterium intracellulare plasmid pLR7. Gene 27: 331–333

    PubMed  Google Scholar 

  • David, H.L., Clavel, S., Clément, F., and Moniz-Pereira, J. (1980) Effects of antituberculosis and antileprosy druggs on mycobacteriophage D29 growth. Antimicrob Agents Chemother 18: 357–359

    PubMed  Google Scholar 

  • David, M., Lubinsky-Mink, S., Ben-Zvi, A., Ulitzur, S., Kuhn, J., and Suissa, M. (1992) A stable Escherichia coli-Mycobacterium smegmatis plasmid shuttle vector containing the mycobacteriophage D29 origin. Plasmid 28: 267–271

    PubMed  Google Scholar 

  • Davison, J., Heusterspreute, M., Chevalier, N., Ha-Thi, V., and Brunel, F. (1987) Vectors with restriction site banks. V. pJRD215, a wide-host-range cosmid vector with multiple cloning sites. Gene 51: 275–280

    PubMed  Google Scholar 

  • Dellagostin, O.A., Wall, S., Norman, E., O'Shaughnessy, T., Dale, J.W., and McFadden, J.J. (1993) Construction and use of integrative vectors to express foreign genes in mycobacteria. Molec Microbiol 10: 983–993

    Google Scholar 

  • Donnelly-Wu, M. K., JacobsJr, W.R., and Hatfull, G.F. (1993) Superinfection immunity of mycobacteriophage L5: Applications for genetic transformation of mycobacteria. Molec Microbiol 7: 407–417

    Google Scholar 

  • Dunny, G.M., Lee, L.N., and LeBlanc, D.J. (1991) Improved electroporation and cloning vector system for Gram-positive bacteria. Appl Env Microbiol 57: 1194–1201

    Google Scholar 

  • England, P.M., Wall, S., and McFadden, J. (1991) IS900-promoted stable integration of a foreign gene into mycobacteria. Molec Microbiol 5: 2047–2052

    Google Scholar 

  • Flynn, J.L. (1994) Recombinant BCG as an antigen delivery system. Cell Mol Biol 40: 31–36

    Google Scholar 

  • Franklin, F.C.H., and Spooner, R. (1989) Broad-host-range cloning vectors. In: Promiscuous plasmids of Gram-negative bacteria. (Thomas, C.M., ed.), pp. 247–267. Academic Press, London, U.K.

    Google Scholar 

  • Frey, J., and Bagdasarian, M. (1989) The molecular biology of IncQ plasmids. In: Promiscuous plasmids of Gram-negative bacteria. (Thomas, C.M., ed.), pp. 79–94. Academic Press, London, U.K.

    Google Scholar 

  • Garbe, T.R., Barathi, J., Barnini, S., Zhang, Y., Abou-Zeid, C., Tang, D., Mukherjee, R., and Young, D.B. (1994) Transformation of mycobacterial species using hygromycin resistance as selectable marker. Microbiology 140: 133–138

    PubMed  Google Scholar 

  • Gavigan, J.A., Guilhot, C., Gicquel, B., and Martin, C. (1995) Use of conjugative and thermosensitive cloning vectors for transposon delivery to M. smegmatis. FEMS Microbiol Lett 127: 35–39

    PubMed  Google Scholar 

  • Giequel-Sanzey, B., Moniz-Pereira, J., Gheorghiu, M., and Rauzier, J. (1989) Structure of pAL5000, a plasmid from Mycobacterium fortuitum and its utilization in transformation of mycobacteria. Acta Leprol 7: 208–211

    PubMed  Google Scholar 

  • Good, R.C. (1992) The genus Mycobacterium-medical. In: The Prokaryotes, a handbook on the biology of bacteria: Ecophysiology, isolation, identification, applications. Second edition, chapter 53. (Balows, A., Trüper, H.G., Dworkin, M., Harder, W., and Schleifer, K.-H., eds.), pp. 1238–1270. Springer Verlag, New York

    Google Scholar 

  • Gormley, E.P., and Davies, J. (1991) Transfer of plasmid RSF1010 by conjugation from Escherichia coli to Streptomyces lividans and Mycobacterium smegmatis. J Bacteriol 173: 6705–6708

    PubMed  Google Scholar 

  • Goto, Y., Taniguchi, H., Udou, T., Mizuguchi, Y., and Tokunaga, T. (1991) Development of a new host vector system in mycobacteria. FEMS Microbiol Lett 83: 277–282

    Google Scholar 

  • Greenberg, J., and Woodley, C.L. (1984) Genetics of Mycobacteria. In: The Mycobacteria, a sourcebook. (Kubica, G.P., and Wayne, L.G., eds.), part A, chapter 26, pp. 629–639. Dekker Inc., New York and Basel

    Google Scholar 

  • Guerin, W.F., and Jones, G.E. (1988) Mineralization of phenanthrene by a Mycobacterium sp. Appl Env Microbiol 54: 937–944

    Google Scholar 

  • Guilhot, C., Otal, I., van Rompaey, I., Martin, C., and Gicquel, B. (1994) Efficient transposition in mycobacteria: Construction of M. smegmatis insertional mutant libraries. J bacteriol 176: 535–539

    PubMed  Google Scholar 

  • Hartmans, S., de Bont, J.A.M. and Harder, W. (1989) Microbial metabolism of short-chain unsaturated hydrocarbons. FEMS Microbiol Reviews 9: 235–264

    Google Scholar 

  • Hartmans, S., and de Bont, J.A.M. (1992) The genus Mycobacterium-nonmedical. In: The Prokaryotes, a handbook on the biology of bacteria: ecophysiology, isolation, identification, applications. Second edition, chapter 52. (Balows, A., Trüper, H.G., Dworkin, M., Harder, W., and Schleifer, K.-H., eds.), pp. 1214–1237. Springer Verlag, New York

    Google Scholar 

  • Hartmans, S., Kaptein, A., Tramper, J., and de Bont, J.A.M. (1992) Characterization of a Mycobacterium sp. and a Xanthobacter sp. for the removal of vinyl chloride and 1,2 dichloroethane from waste gases. Appl Microbiol Biotechnol 37: 796–801

    Google Scholar 

  • Haeseleer, F. (1994) Structural instability of recombinant plasmids in mycobateria. Res Microbiol 145: 683–687

    PubMed  Google Scholar 

  • Hatfull, G.F. (1993) Genetic transformation of mycobacteria. Trends in Microbiol 1: 310–314

    Google Scholar 

  • Hatfull, G.F., and Sarkis, G.J. (1993) DNA sequence, structure and gene expression of Mycobacteriophage L5: a phage system for mycobacterial genetics. Molec Microbiol 7: 395–405

    Google Scholar 

  • Hermans, J., Boschloo, J.G., and de Bont, J.A.M. (1990) Transformation of Mycobacterium aurum by electroporation: the use of glycine, lysozyme and isonicotinic acid hydrazide in enhancing transformation efficiency. FEMS Microbiol Lett 72: 221–224

    Google Scholar 

  • Hermans, J., Martin, C., Huyberts, G.N.M., Goosen, T., and de Bont, J.A.M. (1991) Transformation of Mycobacterium aurum and Mycobacterium smegmatis with the broad-host-range Gramnegative cosmid vector pJRD215. Molec Microbiol 5: 1561–1566

    Google Scholar 

  • Hermans, J., Suy, I.M. L., and de Bont, J.A.M. (1993) Transformation of Gram-positive microorganisms with the Gram-negative broad-host-range cosmid vector pJRD215. FEMS Microbiology Lett 108: 201–204

    Google Scholar 

  • Hopwood, D.A., Bibb, M. J., Chater, K.F. Kieser, T., Bruton, C.J., Kieser, H.M., Lydiate, D.J., Smith, C.P., Ward, J.M., and Schrempf, H. (1985) Genetic manipulation of Streptomyces: a laboratory manual. John Innes Foundation, Norwich

    Google Scholar 

  • Hopwood, D.A., Kieser, T., Colston, M. J., and Lamb, F.I. (1988) Molecular biology of mycobacteria. British Med Bull 44: 528–546

    Google Scholar 

  • HorsburghJr., C.R. (1991) Mycobacterium avium complex infection in the acquired immunodeficiency syndrome. New Engl J Med 324: 1332–1337

    PubMed  Google Scholar 

  • Husson, R.N., James, B.E., and Young, R.A. (1990) Gene replacement and expression of foreign DNA in mycobacteria. J Bacteriol 172: 519–524

    PubMed  Google Scholar 

  • JacobsJr., W.R., Tuckman, M., and Bloom, B.R. (1987) Introduction of foreign DNA into mycobacteria using a shuttle phasmid. Nature 327: 532–535

    PubMed  Google Scholar 

  • JacobsJr., W.R., Kalpana, G.V., Cirillo, J.D., Pascopella, L., Snapper, S.B., Udani, R.A., Jones, W., Barletta, R.G., and Bloom, B.R. (1991) Genetic systems for mycobacteria. Meth Enzymol 204: chapter 25, 537–555

    PubMed  Google Scholar 

  • JacobsJr., W.R., Barletta, R.G., Udani, R., Chan, J., Kalkut, G., Sosne, G., Kieser, T., Sarkis, G.J., Hatfull, G.F., and Bloom, B.R. (1993) Rapid assessment of drug susceptibilities of Mycobacterium tuberculosis by means of luciferase reporter phages. Science 260: 819–822.

    PubMed  Google Scholar 

  • Jones, W.D., and David, H.L. (1972) Preliminary observations on the occurrence of a streptomycin R-factor in Mycobacterium smegmatis ATCC 607. Tubercle 53: 35–42

    PubMed  Google Scholar 

  • Jones, W.D., Beam, R.E., and David, H.L. (1974) Transduction of a streptomycin R-factor from Mycobacterium smegmatis to Mycobacterium tuberculosis H37Rv. Tubercle 55: 73–80

    PubMed  Google Scholar 

  • Katunuma, N., and Nakasato, H. (1954) A study of the mechanism of the development of streptomycin-resistant organisms by addition of DNA prepared from resistant bacilli. Kekkaku 29: 19–22

    PubMed  Google Scholar 

  • Kieser, T., Moss, M. T., Dale, J.W. and Hopwood, D.A. (1986) Cloning and expression of Mycobacterium bovis BCG DNA in Streptomyces lividans. J Bacteriol 168: 72–80

    PubMed  Google Scholar 

  • Labidi, A., Dauguet, C., Goh, K.S., and David, H.L. (1984) Plasmid profiles of Mycobacterium fortuitum complex isolates. Curr Microbiol 11: 235–240

    Google Scholar 

  • Labidi, A., David, H.L., and Roulland-Dussoix, D. (1985) Restriction endonuclease mapping and cloning of Mycobacterium fortuitum var fortuitum plasmid pAL5000. Ann Inst Pasteur 136B: 209–215

    Google Scholar 

  • Labidi, A., Mardis, E., Roe, B.A., and WallaceJr., R.J. (1992) Cloning and DNa sequence of the Mycobacterium fortuitum var fortuitum plasmid pAL5000. Plasmid 27: 130–140

    PubMed  Google Scholar 

  • Lamb, F.I., and Colston, M. J. (1986) Cloning of Mycobacterium leprae genes in Streptomyces. Lepr Rev 57: 225–229

    PubMed  Google Scholar 

  • Langridge, W.H.R., Li, B.J., and Szalay, A.A. (1987) Uptake of DNA and RNA into cells mediated by electroporation. Meth Enzymol 153: chapter 20, 336–350

    PubMed  Google Scholar 

  • Lazraq, R., Clavel-Sérès, S., David, H.L., and Roulland-Dussoix, D. (1990) Conjugative transfer of a shuttle plasmid for Escherichia coli to Mycobacterium smegmatis. FEMS Microbiol Lett 69: 135–138

    Google Scholar 

  • Lazraq, R., Clavel-Sérès, S., and David, H.L. (1991a) Transformation of distinct mycobacterial species by shuttle vectors derived from the Mycobacterium fortuitum pAL5000 plasmid. Curr Microbiol 22: 9–13

    Google Scholar 

  • Lazraq, R., Houssaini-Iraqui, M., Clavel-Sérès, S., and David, H.L. (1991b) Cloning and expression of the origin of replication of mycobacteriophage D29 in Mycobacterium smegmatis. FEMS Microbiol Lett 80: 117–120

    Google Scholar 

  • Lee, M.H., Pascopella, L., JacobsJr., W.R., and Hatfull, G.F. (1991) Site-specific integration of mycobacteriophage L5: Integration-proficient vectors for Mycobacterium smegmatis, Mycobacterium tuberculosis, and bacille Calmette-Guerin. Proc Natl Acad Sci USA 88: 3111–3115

    PubMed  Google Scholar 

  • Luchanski, J.B., Muriana, P.M., and Klaenhammer, T.R. (1988) Electrotransformation of Gram-positive bacteria. Bio-Rad Bull 1350: 1–3

    Google Scholar 

  • Martin, C.K.A. (1984) Sterols. In: Biotechnology, part 6A: Biotransformations. (Kieslich, K., ed.), pp. 79–95. Chemie Verlag, Weinheim, Germany

    Google Scholar 

  • Meissner, P.S., and FalkinhamIII, J.O. (1984) Plasmid encoded mercuric reductase in Mycobacterium scrofulaceum. J Bacteriol 157: 669–672

    PubMed  Google Scholar 

  • Mizuguchi, Y. (1984) Mycobacteriophages. In: The Mycobacteria, a sourcebook. (Kubica, G.P., and Wayne, L.G., eds.), part A, chapter 27, pp. 641–662. Dekker Inc., New York and Basel

    Google Scholar 

  • Naser, S.A., McCarthy, C.M., Smith, G.B., and Tupponce, A.K. (1993) Low temperature protocol for efficient transformation of Mycobacterium smegmatis spheroplasts. Curr Microbiol 27: 153–156

    PubMed  Google Scholar 

  • Norgard, M.V., and Imaeda, T. (1978) Physiological factors involved in the transformation of Mycobacterium smegmatis. J Bacteriol 133: 1254–1262

    PubMed  Google Scholar 

  • Pitulle, C., Dorsch, M., Kazda, J., Wolters, J., and Stackebrandt, E. (1992) Phylogeny of rapidly growing members of the genus Mycobacterium. Int J Syst Bacteriol 42: 337–343

    PubMed  Google Scholar 

  • Radford, A.J., and Hodgson, A.L.M. (1991) Construction and characterization of a Mycobacterium-Escherichia coli shuttle vector. Plasmid 25: 149–153

    PubMed  Google Scholar 

  • Ranes, M.G., Rauzier, J., Lagranderie, M., Gheorghiu, M., and Gicquel, B. (1990) Functional analysis of pAL5000, a plasmid from Mycobacterium fortuitum: Construction of a ‘mini’ Mycobacterium-Escherichia coli shuttle vector. J Bacteriol 172: 2793–2797

    PubMed  Google Scholar 

  • Rastogi, N., and Venkitasubramanian, T.A. (1979) Preparation of protoplasts and whole cell ghosts from Mycobacterium smegmatis. J Gen Microbiol 115: 517–521

    PubMed  Google Scholar 

  • Rastogi, N., and David, H.L. (1981) Ultrastructural and chemical studies on wall-deficient forms, spheroplasts and membrane vesicles from Mycobacterium aurum. J Gen Microbiol 124: 71–79

    PubMed  Google Scholar 

  • Rastogi, N., David, H.L., and Rafidinarivo, E. (1983) Spheroplast fusion as a mode of genetic recombination in mycobacteria. J Gen Microbiol 129: 1227–1237

    PubMed  Google Scholar 

  • Rastogi, N., and David, H.L. (1988) Mechanisms of pathogenicity in mycobacteria. Biochimie 70: 1101–1120

    PubMed  Google Scholar 

  • Rastogi, N., Frehel, C., and David, H.L. (1986) Triple layered structure of mycobacterial cell wall: evidence for the existence of a polysaccharide-rich outer layer in 18 mycobacterial species. Curr Microbiol 13: 237–242

    Google Scholar 

  • Rauzier, J., Moniz-Pereira, J., and Gicquel-Sanzey, B. (1988) Complete nucleotide sequence of pAL5000, a plasmid from Mycobacterium fortuitum. Gene 71: 315–321

    PubMed  Google Scholar 

  • Runyon, E.H. (1970) Identification of mycobacterial pathogens utilizing colony characteristics. Am J Clin Pathol 54: 578–586

    PubMed  Google Scholar 

  • Sadashiva Karnik, S., and Gopinathan, K.P. (1983) Transfection of Mycobacterium smegmatis SN2 with mycobacteriophage I3 DNA. Arch Microbiol 136: 275–280

    PubMed  Google Scholar 

  • Sadhu, C., and Gopinathan, K.P. (1982) A rapid procedure for the isolation of speroplasts from Mycobacterium smegmatis. FEMS Microbiol Lett 15: 19–22

    Google Scholar 

  • Saroja, D., and Gopinathan, K.P. (1973) Transduction of isoniazid susceptibility-resistance and streptomycin-resistance in mycobacteria. Antimicrob Agents Chemother 4: 643–645

    PubMed  Google Scholar 

  • Sato, H., Diena, B.B., and Greenberg, L. (1965) The production of spheroplasts by rapid-growing non-virulent mycobacteria. Can J Microbiol 11: 807–810

    PubMed  Google Scholar 

  • Shinnick, T.M. (1992) Mycobacterium leprae. In: The Prokaryotes, a handbook on the biology of bacteria: ecophysiology, isolation, identification, applications. Second edition, chapter 54. (Balows, A., Trüper, H.G., Dworkin, M., Harder, W., and Schleifer, K.-H., eds.), pp. 1271–1282. Springer Verlag, New York

    Google Scholar 

  • Slosárek, M., Konícková-Radochová, M., and Konícek, J. (1978) Genetic transfers in mycobacteria. Folia Microbiol 23: 140–151

    Google Scholar 

  • Snapper, S.B., Lugosi, L., Jekkel, A., Melton, R.E., Kieser, T., Bloom, B.R., and JacobsJr., W.R. (1988) Lysogeny and transformation in mycobacteria: stable expression of foreign genes. Proc Natl Acad Sci USA 85: 6987–6991

    PubMed  Google Scholar 

  • Snapper, S.B., Melton, R.E., Mustafa, S., Kieser, T., and JacobsJr., W.R. (1990) Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. Molec Microbiol 4: 1911–1919

    Google Scholar 

  • Stover, C.K., de la Cruz, V.F., Fuerst, T.R., Burlein, J.E., Benson, L.A., Bennett, L.T., Bansal, G.P., Young, J.F., Lee, M.H., Hatfull, G.F., Snapper, S.B., Barletta, R.G., JacobsJr., W.R., and Bloom, B.R. (1991) New use of BCG for recombinant vaccines. Nature 351: 456–460

    PubMed  Google Scholar 

  • Stover, C.K., Bansal, G.P., Hanson, M.S., Burlein, J.E., Palaszynski, S.R., Young, J.F., Koenig, S., Young, D.B., Sadziene, A., and Barbour, A.G. (1993) Protective immunity elicited by recombinant BCG expressing outer surface protein A (OspA) lipoprotein: A candidate Lyme Disease vaccine. J Exp Med 178: 197–209.

    PubMed  Google Scholar 

  • Sundar Raj, C.V., and Ramakrishnan, T. (1970) Transduction in M. smegmatis. Nature 228: 280–281

    Google Scholar 

  • Thole, J.E.R., Dauwerse, H.G., Das, P.K., Groothuis, D.G., Schouls, L.M., and van Embden, J.D.A. (1985) Cloning of Mycobacterium bovis BCG DNA and expression of antigens in Escherichia coli. Infect Immun 50: 800–806

    PubMed  Google Scholar 

  • Tokunaga, T., and Nakamura, R.M. (1968) Infection of competent Mycobacterium smegmatis with deoxyribonucleic acid extracted from bacteriophage B1. J Virol 2: 110–117

    PubMed  Google Scholar 

  • Tsukamura, M., Hasimoto, M. and Noda, Y. (1960) Transformation of isoniazid and streptomycon resistance in Mycobacterium avium by the desoxyribonucleate derived from isoniazid-and streptomycin-double-resistant cultures. Am Rev Respir Dis 81:403–406

    PubMed  Google Scholar 

  • Udou, T., Ogawa, M., and Mizuguchi, Y. (1982) Spheroplast formation of Mycobacterium smegmatis and morphological aspects of their reversion to the bacillary form. J Bacteriol 151: 1035–1039

    PubMed  Google Scholar 

  • Udou, T., Ogawa, M., and Mizuguchi, Y. (1983) An improved method for the preparation of mycobacterial spheroplasts and the mechanism involved in the reversion to bacillary form: electron microscopic and physiological study. Can J Microbiol 29: 60–68

    PubMed  Google Scholar 

  • Villar, C.A., and Benitez, J. (1992) Functional analysis of pAL5000 plasmid in Mycobacterium fortuitum. Plasmid 28: 166–169

    PubMed  Google Scholar 

  • Waterhouse, K.V., Swain, A., and Venables, W.A. (1991) Physical characterisation of plasmids in a morpholine degrading mycobacterium. FEMS Microbiol Lett 80: 305–310

    Google Scholar 

  • Wayne, L.G., and Kubica, G.P. (1986) The Mycobacteria. In: Bergey's Manual of Determinative Bacteriology, 9th edition. (Buchanan, R.E., and Gibbons, N.E., eds.), section 16, pp. 1435–1457. Williams & Wilkins Co., Baltimore, USA

    Google Scholar 

  • Weijers, C.A.G.M., van Ginkel, C.G., and de Bont, J.A.M. (1988) Enantiomeric composition of lower epoxyalkanes produced by methane-, alkane- and alkene-utilizing bacteria. Enzyme Microbiol Technol 10: 214–218

    Google Scholar 

  • Wirth, R., Friesenegger, A., and Fiedler, S. (1989) Transformation of various species of Gram-negative bacteria belonging to 11 different genera by electroporation. Mol Gen Genet 216: 175–177

    PubMed  Google Scholar 

  • Zainuddin, Z.F., Kunze, Z.M., and Dale, J.W. (1989) Transformation of Mycobacterium smegmatis with Escherichia coli plasmids carrying a selectable resistance marker. Molec Microbiol 3: 29–34

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hermans, J., de Bont, J.A.M. Techniques for genetic engineering in mycobacteria. Antonie van Leeuwenhoek 69, 243–256 (1996). https://doi.org/10.1007/BF00399613

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00399613

Key words

Navigation