Skip to main content
Log in

Evolution of bacterial denitrification and denitrifier diversity

  • Denitrification: Recent Advances and Future Directions
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Little is known about the role of nitrate in evolution of bacterial energy-generating mechanisms. Denitrifying bacteria are commonly regarded to have evolved from nitrate-respiring bacteria. Some researchers regard denitrification to be the precursor of aerobic respiration; others feel the opposite is true.

Currently recognized denitrifying bacteria such as Hyphomicrobium, Paracoccus, Pseudomonas and Thiobacillus form a very diverse group. However, inadequate testing procedures and uncertain taxonomic identification of many isolates may have overstated the number of genera with species capable of denitrification.

Nitrate reductases are structurally similar among denitrifying bacteria, but distinct from the enzymes in other nitrate-reducing organisms. Denitryfying bacteria have one of two types of nitrite reductase, either a copper-containing enzyme or an enzyme containing a cytochrome cd moiety. Both types are distinct from other nitrate reductases.

Organisms capable of dissimilatory nitrate reduction are widely distributed among eubacterial groups defined by 16S ribosomal RNA phylogeny. Indeed, nitrate reduction is an almost universal property of actinomycetes and enteric organisms. However, denitrification is restricted to genera within the purple photosynthetic group. Denitrification within the genus Pseudomonas is distributed in accordance with DNA and RNA homology complexes.

Denitrifiers seem to have evolved from a common ancestor within the purple photosynthetic bacterial group, but not from a nitrate-reducing organism such as those found today. Although denitrification seems to have arisen at the same time as aerobic respiration, the evolutionary relationship between the two cannot be determined at this time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham, P. R., Boxer, D. H., Graham, A., Tucker, A. D., Van 't Riet, J. and Wientjes, F. B. 1981. Immunochemical and structural comparison of the respiratory nitrate reductase from Escherichia coli and Klebsiella aerogenes. — FEMS Microbiol. Lett. 10: 95–100.

    Google Scholar 

  • Alef, K. and Klemme, J.-H. 1979. Assimilatory nitrate reductase of Rhodopseudomonas capsulata AD2: A molybdo-hemeprotein. — Z. Naturforsch. 34C: 33–37.

    Google Scholar 

  • Alefounder, P. R., McCarthy, J. E. G. and Ferguson, S. J. 1981. The basis of the control of nitrate reduction by oxygen in Paracoccus denitrificans. — FEMS Microbiol. Lett. 12: 321–326.

    Google Scholar 

  • Averill, B. A. and Tiedje, J. M. 1982. The chemical mechanism of microbial denitrification. —FEBS Lett. 138: 8–12.

    Google Scholar 

  • Betlach, M. R. and Hochstein, L. I. 1982. Derepression of nitrate reductase in denitrifiers grown under oxygen limitation in chemostats. — Paper N65 in Abstr. Annu. Meet. Am. Soc. Microbiol., p. 188.

  • Betlach, M. R. and Tiedje, J. M. 1981. Kinetic explanation for accumulation of nitrite, nitric oxide, and nitrous oxide during bacterial denitrification. — Appl. Environ. Microbiol. 42: 1074–1084.

    Google Scholar 

  • Broda, E. 1975. The history of inorganic nitrogen in the biosphere. — J. Mol. Evol. 7: 87–100.

    Google Scholar 

  • Broda, E. and Peschek, G. A. 1979. Did respiration or photosynthesis come first?. — J. Theor. Biol. 81: 201–212.

    Google Scholar 

  • Buchanan, R. E. and Gibbons, N. E. 1974. Bergey's manual of determinative bacteriology. Eighth Edition. — Williams and Wilkins Co. Baltimore.

    Google Scholar 

  • Calder, K., Burke, K. A. and Lascelles, J. 1980. Induction of nitrate reductase and membrane cytochromes in wild type and chlorate-resistant Paracoccus denitrificans — Arch. Microbiol. 126: 149–153.

    Google Scholar 

  • Caldwell, D. E., Caldwell, S. J. and Laycock, J. P. 1976. Thermothrix thioparus gen. et sp. nov., a facultatively anaerobic facultative chemolithotroph living at neutral pH and high temperature. — Can. J. Microbiol. 22: 1509–1517.

    Google Scholar 

  • Carlson, C. A. 1982. The physiological genetics of denitrifying bacteria — Antonie van Leeuwenhoek 48: 555–567.

    Google Scholar 

  • Chameides, W. L. and Walker, J. C. G. 1981. Rates of fixation by lightning of carbon and nitrogen in possible primitive atmospheres. — Origins Life 11: 291–302.

    Google Scholar 

  • Cole, J. A. and Brown, C. M. 1980. Nitrite reduction to ammonia by fermentative bacteria: a short circuit in the biological nitrogen cycle. — FEMS Microbiol. Lett. 7: 65–72.

    Google Scholar 

  • Coleman, K. J., Cornish-Bowden, A. and Cole, J. A. 1978. Purification and properties of nitrite reductase from Escherichia coli K 12. — Biochem. J. 175: 483–493.

    Google Scholar 

  • Daniel, R. M., Smith, I. M., Phillip, J. A. D., Radcliffe, H. D., Drozd, J. W. and Bull, A. T. 1980. Anaerobic growth and denitrification by Rhizobium japonicum and other rhizobia. —J. Gen. Microbiol. 120: 517–521.

    Google Scholar 

  • Des Marais, D. J. 1980. The organic geochemical record in ancient sediments and the early evolution of life-a short summary. p. 19–29. In H. O. Halvorson and K. E.Van Holde (eds). The origins of life and evolution, MBL Lectures in Biology, Vol. 1. — Alan R. Liss, Inc. New York.

    Google Scholar 

  • Downey, R. J., Kiszkiss, D. F., and Nuner, J. H. 1969. Influence of oxygen on development of nitrate respiration in Bacillus stearothermophilus. — J. Bacteriol. 98: 1056–1062.

    Google Scholar 

  • Egami, F. 1973. A comment to the concept on the role of nitrate fermentation and nitrate respiration in an evolutionary pathway of energy metabolism. — Z. Allg. Mikrobiol. 13: 177–181.

    Google Scholar 

  • Focht, D. D. and Joseph, H. 1974. Degradation of 1,1-diphenyl-ethylene by mixed cultures. —Can. J. Microbiol. 20: 631–635.

    Google Scholar 

  • Forget, P. 1971. Les nitrate-réductases bactériennes. Solubilisation, purification et propriétés de l'enzyme de Micrococcus denitrificans. — Eur. J. Biochem. 18: 442–450.

    Google Scholar 

  • Fox, G. E., Pechman, K. R. and Woese, C. R. 1977. Comparative cataloguing of 16S ribosomal ribonucleic acid; molecular approach to prokaryote systematics. — Int. J. Syst. Bacteriol. 27: 44–57.

    Google Scholar 

  • Fox, G. E., Stackerbrandt, E., Hespell, R. B., Bigson, J., Maniloff, J., Dyer, T. A., Wolfe, R. S., Balch, W. E., Tanner, R. S., Magrum, L. J., Zablen, L. B., Blakemore, R., Bupta, R., Bonen, L., Lewis, B. J., Stahl, D. A., Luehrsen, K. R., Chen, K. N., and Woese, C. R. 1980. The phylogeny of prokaryotes. — Science 209: 457–463.

    Google Scholar 

  • Garcia, J.-L. 1977. Étude de la dénitrification chez une bactérie thermophile sporulée. — Ann. Microbiol. (Inst. Pasteur) 128A: 447–458.

    Google Scholar 

  • Garcia, J.-L., Roussos, S. et Bensoussan 1981, Étude taxonomique de bactéries dénitrifiantes isolées sur benzoate dans des sols de riziéres du Sénégal. — Cah. O.R.S.T.O.M. Ser. Biol. 43: 13–25.

    Google Scholar 

  • Gest, H. 1980. The evolution of biological energy-transducing systems. — FEMS Microbiol. Lett. 7: 73–77.

    Google Scholar 

  • Grant, M. A. and Payne, W. J. 1981. Denitrification by strains of Neisseria, Kingella, and Chromobacterium. — Int. J. Syst. Bacteriol. 31: 276–279.

    Google Scholar 

  • Greenberg, E. P. and Becker, G. E. 1977. Nitrous oxide as end product of denitrification by strains of fluorescent pseudomonads — Can. J. Microbiol. 23: 903–907.

    Google Scholar 

  • Gribbon, J. 1982. Carbon dioxide, ammonia and life. — New Scientist 94: 413–416.

    Google Scholar 

  • Gudat, J. C., Singh, J. and Wharton, D. C. 1973. Cytochrome oxidase from Pseudomonas aeruginosa. I. Purification and some properties. — Biochim. Biophys. Acta 292: 376–390.

    Google Scholar 

  • Hall, J. B. 1973. The occurrence of nitrate on the early earth and its role in the evolution of the prokaryotes. — Space Life Sci. 4: 204–213.

    Google Scholar 

  • Hall, J. B. 1978. Nitrate-reducing bacteria. p. 296–298. In D. Schlessinger (ed.), Microbiliogy-1978. — American Society for Microbiology. Washington, D.C.

    Google Scholar 

  • Hart, L. T., Larson, A. D. and McCleskey, C. S. 1965. Denitrification by Corynebacterium nephridii. — J. Bacteriol. 89: 1104–1108.

    Google Scholar 

  • Hasan, S. M. and Hall, J. B. 1975. The physiological function of nitrate reduction in Clostridium perfringens. — J. Gen. Microbiol. 87: 120–128.

    Google Scholar 

  • Hattori, A. and Uesugi, I. 1968. Purification and properties of nitrite reductase from the blue-green alga Anabaena cylindrica. — Plant Cell Physiol. 9: 689–699.

    Google Scholar 

  • Hendrie, M. S., Holding, A. J. and Shewan, J. M. 1974. Emended descriptions of the genus Alcaligenes and of Alcaligenes faecalis and proposal that the generic name Achromobacter be rejected: status of the named species of Alcaligenes and Achromobacter. — Int. J. Syst. Bacteriol. 24: 534–550.

    Google Scholar 

  • Hollocher, T. C. 1982. The pathway of nitrogen and reductive enzymes of denitrification. — Antonie van Leeuwenhoek 48: 531–544.

    Google Scholar 

  • Holloway, B. W. 1979. Plasmids that mobilize bacterial chromosome. — Plasmid 2: 1–19.

    Google Scholar 

  • Iwasaki, H. and Matsubara, T. 1971. Cytochrome c-557 (551) and cytochrome cd of Alcaligenes faecalis. — J. Biochem. (Tokyo) 69: 847–857.

    Google Scholar 

  • Iwasaki, H. and Matsubara, T. 1972. A nitrite reductase from Achromobacter cycloclastes. —J. Biochem. (Tokyo) 71: 645–652.

    Google Scholar 

  • Iwasaki, H., Shidara, S., Suzuki, H. and Mori, T. 1963. Studies on denitrification. VII. Further purification and properties of denitrifying enzyme. — J. Biochem. (Tokyo) 53: 299–303.

    Google Scholar 

  • Jeter, R. M. and Ingraham, J. L. 1981. The denitrifying prokaryotes. p. 913–925. In M. P. Starr, H. Stolp, H. G. Truper, A. Ballows, and H. G. Schlegel (eds), The prokaryotes. — Springer Verlag, New York.

    Google Scholar 

  • Kakutani, T., Watanabe, H., Arima, K. and Beppu, T. 1981. Purification and properties of copper-containing nitrite reductase from a denitrifying bacterium, Alcaligenes faecalis strain S-6. — J. Biochem. (Tokyo) 89: 453–461.

    Google Scholar 

  • Kaneko, M. and Ishimoto, M. 1978. A study on nitrate reductase from Propionibacterium acidipropionici. — J. Biochem. (Tokyo) 83: 191–200.

    Google Scholar 

  • Knowles, R. 1981. Denitrification. p. 323–369. In E. A. Paul and J. N. Ladd (eds), Soil biochemistry, Vol. 5. — Marcel Dekker, Inc. New York.

    Google Scholar 

  • Krieg, N. R. 1976. Biology of the chemoheterotrophic spirilla. — Bacteriol. Rev. 40: 55–115.

    Google Scholar 

  • Lam, Y. and Nicholas, D. J. D. 1969. A nitrite reductase with cytochrome oxidase activity from Micrococcus denitrificans. — Biochim. Biophys. Acta 180: 459–472.

    Google Scholar 

  • Liu, M.-C. and Peck, H. D.Jr. 1981. The isolation of a hexaheme cytochrome from Desulfovibrio desulfuricans and its identification as a new type of nitrite reductase. — J. Biol. Chem. 256: 13159–13164.

    Google Scholar 

  • MacKay, R. M., Zablen, L. B., Woese, C. R. and Doolittle, W. F. 1979. Homologies in processing and sequence between the 23S ribosomal ribonucleic acids of Paracoccus denitrificans and Rhodopseudomonas sphaeroides. — Arch. Microbiol. 123: 165–172.

    Google Scholar 

  • Mendez, J. M. and Vega, J. M. 1981. Purification and molecular properties of nitrite reductase from Anabaena sp. 7119. — Physiol. Plant. 52: 7–14.

    Google Scholar 

  • Miyata, M. and Mori, T. 1969. Studies on denitrification. X. The “denitrifying enzyme” as a nitrite reductase and the electron donating system for denitrification. — J. Biochem. (Tokyo) 66: 463–471.

    Google Scholar 

  • Nelson, L. M. and Knowles, R. 1978. Effect of oxygen and nitrate on nitrogen fixation and denitrification by Azospirillum brasilense grown in continuous culture. — Can. J. Microbiol. 24: 1395–1403.

    Google Scholar 

  • Newton, N. 1969. The two-haem nitrite reductase of Micrococcus denitrificans. — Biochim. Biophys. Acta 185: 316–331.

    Google Scholar 

  • Neyra, C. A., Dobereiner, J., Lalande, R. and Knowles, R. 1977. Denitrification by N2-fixing Spirillum lipoferum. — Can. J. Microbiol. 23: 300–305.

    Google Scholar 

  • Oltmann, L. F., Reijnders, W. N. M. and Stouthamer, A. H. 1976. Characterization of purified nitrate reductase A and chlorate reductase C from Proteus mirabilis. — Arch. Microbiol. 111: 25–35.

    Google Scholar 

  • Palleroni, N. J., Kunisawa, R., Contopoulou, R. and Doudoroff, M. 1973. Nucleic acid homologies in the genus Pseudomonas. — Int. J. Syst. Bacteriol. 23: 333–339.

    Google Scholar 

  • Payne, W. J. 1973. Reduction of nitrogenous oxides by microorganisms. — Bacteriol. Rev. 37: 409–452.

    Google Scholar 

  • Payne, W. J., Riley, P. S. and Cox, C. D.Jr. 1971. Separate nitrite, nitric oxide, and nitrous oxide reducing fractions from Pseudomonas perfectomarinus. — J. Bacteriol. 106: 356–361.

    Google Scholar 

  • Pichinoty, F., de Barjac, H., Mandel, M., Greenway, B. and Garcia, J.-L. 1976a. Une nouvelle bactérie sporulée, dénitrifiante, mésophile: Bacillus azotoformans n. sp. — Ann. Microbiol. (Inst. Pasteur) 127B: 351–361.

    Google Scholar 

  • Pichinoty, F., Bigliardi-Rouvier, J., Mandel, M., Greenway, B., Metenier, G. and Garcia, J.-L. 1976b. The isolation and properties of a denitrifying bacterium of the genus Flavobacterium. — Antonie van Leeuwenhoek 42: 349–354.

    Google Scholar 

  • Pichinoty, F., Garcia, J.-L., Job, C. et Durand, M. 1978. La dénitrification chez Bacillus licheniformis. — Can. J. Microbiol. 24: 45–49.

    Google Scholar 

  • Pichinoty, F., Mandel, M. and Garcia, J.-L. 1977. Étude de six souches de Agrobacterium tumefaciens et A. radiobacter. — Ann. Microbiol. (Inst. Pasteur) 128A: 303–310.

    Google Scholar 

  • Renner, E. D. and Becker, G. E. 1970. Production of nitric oxide and nitrous oxide during denitrification by Corynebacterium nephridii. — J. Bacteriol. 101: 821–826.

    Google Scholar 

  • Ripley, E. M. and Nicol, D. L. 1981. Sulfur isotopic studies of Archean slate and graywacke from northern Minnesota: evidence for the existence of sulfate reducing bacteria. — Geochim. Cosmochim. Acta 45: 839–846.

    Google Scholar 

  • Rosso, J.-P., Forget, P. et Pichinoty, F. 1973. Les nitrate-reductases bactériennes. Solubilisation, purification et propriétés de l'enzyme A de Micrococcus halodénitrificans. — Biochim. Biophys. Acta 321: 443–455.

    Google Scholar 

  • Sadana, J. C., Khan, B. M. and Nicholas, D. J. D. 1981. Nitrite reductase from Achromobacter fischeri. — FEMS Microbiol. Lett. 12: 415–417.

    Google Scholar 

  • Satoh, T., Hoshino, Y. and Kitamira, H. 1976. Rhodopseudomonas sphaeroides forma sp. denitrificans, a denitrifying strain as a subspecies of Rhodopseudomonas sphaeroides. — Arch. Microbiol. 108: 265–269.

    Google Scholar 

  • Sawada, E., Satoh, T. and Kitamura, H. 1978. Purification and properties of a dissimilatory nitrite reductase of a denitrifying phototrophic bacterium. — Plant Cell. Physiol. 19: 1339–1351.

    Google Scholar 

  • Sawhney, V. and Nicholas, D. J. D. 1978. Sulphide-linked nitrite reductase from Thiobacillus denitrificans with cytochrome oxidase activity: purification and properties. — J. Gen. Microbiol. 106: 119–128.

    Google Scholar 

  • Schidlowski, M. 1979. Antiquity and evolutionary status of bacterial sulfate reduction: sulfur isotope evidence. — Origins Life 9: 299–311.

    Google Scholar 

  • Schwartz, R. M. and Dayhoff, M. O. 1978. Origens of prokaryotes, eukaryotes, mitochondria, and chloroplasts. — Science 199: 395–403.

    Google Scholar 

  • Seki-Chiba, S. and Ishimoto, M. 1977. Studies on nitrate reductase of Clostridium perfringens. I. Purification, some properties, and effect of tungstate on its formation. — J. Biochem. (Tokyo) 82: 1663–1671.

    Google Scholar 

  • Smibert, R. M. and Krieg, N. R. 1981. Nitrate reduction and denitrification. p. 419. In P. Gerhardt, R. G. E. Murray, R. N. Costilow, E. W. Nester, W. A. Wood, N. R. Krieg, and G. B. Phillips (eds), Manual of methods for general bacteriology. — Am. Soc. Microbiol. Washington, D. C.

    Google Scholar 

  • Smith, M. S. and Zimmerman, K. 1981. Nitrous oxide production by non-denitrifying soil nitrate reducers. — Soil Sci. Soc. Am. J. 45: 865–871.

    Google Scholar 

  • Snell, J. J. S. and Lapage, S. P. 1976. Transfer of some saccharolytic Moraxella species to Kingella, Hendriksen and Bøvre 1976, with descriptions of Kingella indologenes sp. nov. and Kingella denitrificans sp. nov. — Int. J. Syst. Bacteriol. 26: 451–458.

    Google Scholar 

  • Sperl, G. T. and Hoare, D. S. 1971. Denitrification with methanol: a selective enrichment for Hyphomicrobium species. — J. Bacteriol. 108: 733–736.

    Google Scholar 

  • Stanier, R. Y. 1947. Studies on non-fruiting myxobacteria. — J. Bacteriol. 53: 297–315.

    Google Scholar 

  • Stouthamer, A. H. 1980. Bioenergetic studies on Paracoccus denitrificans. — Trends Biochem. Sci. 5: 164–166.

    Google Scholar 

  • Strother, P. K. and Barghoorn, E. S. 1980. Microspheres from the Swartkoppie Formation: a review. p. 1–18. In H. O. Halvorson and K. E.Van Holde (eds). The origins of life and evolution. MBL Lectures in Biology, Vol. 1. — Alan R. Liss, Inc. New York.

    Google Scholar 

  • Terai, H. and Mori, T. 1975. Studies on phosphorylation coupled with denitrification and aerobic respiration in Pseudonomas denitrificans. — Bot. Mag. (Tokyo) 88: 231–244.

    Google Scholar 

  • Timmer-Ten Hoor, A. 1975. A new type of thiosulphate-oxidizing, nitrate-reducing microorganism: Thiomicrospira denitrificans sp. nov. — Neth. J. Sea Res. 9: 344–350.

    Google Scholar 

  • Timmer-Ten Hoor, A. 1981. Cell yield and bioenergetics of Thiomicrospira denitrificans compared with Thiobacillus denitrificans. — Antonie van Leeuwenhoek. 47: 231–243.

    Google Scholar 

  • Vangai, S. and Klein, D. A. 1974. Nitrite-dependent dissimilatory microorganisms isolated from Oregon soils. — Soil Biol. Biochem. 6: 335–339.

    Google Scholar 

  • Van Gent-Ruijters, M. L. W., De Vries, W. and Stouthamer, A. H. 1975. Influence of nitrate on fermentation pattern, molar growth yields and synthesis of cytochrome b in Propionibacterium pentosaceum. — J. Gen. Microbiol. 88: 36–48.

    Google Scholar 

  • Van't Riet, J., Wientjes, F. B., Van Doorn, J. and Planta, R. J. 1979. Purification and characterization of the respiratory nitrate reductase of Bacillus licheniformis. — Biochim. Biophys. Acta 576: 347–360.

    Google Scholar 

  • Vega, J. M., Guerrero, M. G., Leadbetter, E. and Losada, M. 1973. Reduced nicotinamide-adenine dinucleotide-nitrite reductase from Azotobacter chroococcum. — Biochem. J. 133: 701–708.

    Google Scholar 

  • Werber, M. M. and Mevarech, M. 1978. Induction of a dissimilatory reduction pathway of nitrate in Halobacterium of the Dead Sea. — Arch. Biochem. Biophys. 186: 60–65.

    Google Scholar 

  • Wesch, R. and Klemme, J.-H. 1980. Catalytic and molecular differences between assimilatory nitrate reductases isolated from two strains of Rhodopseudomonas capsulata. — FEMS Microbiol. Lett. 8: 37–41.

    Google Scholar 

  • Williams, R. J. and Evans, W. C. 1975. The metabolism of benzoate by Moraxella species through anaerobic nitrate respiration. — Biochem. J. 148: 1–10.

    Google Scholar 

  • Woese, C. R. 1980. An alternative to the Oparin view of the primeval sequence. p. 65–76. In H. O. Halvorson and K. E.Van Holde (eds), The origins of life and evolution. MBL Lectures in Biology, Vol. 1. — Alan R. Liss, Inc. New York.

    Google Scholar 

  • Yamanaka, T. and Okunuki, K. 1963. Crystalline Pseudomonas cytochrome oxidase. I. Enzymatic properties with special reference to the biological specificity. — Biochim. Biophys. Acta 67: 379–393.

    Google Scholar 

  • Zablotowicz, R. M. and Focht, D. D. 1979. Denitrification and anaerobic, nitrate-dependent acetylene reduction in cowpea Rhizobium. — J. Gen. Microbiol. 111: 445–448.

    Google Scholar 

  • Zohner, A. and Broda, E. 1979. Model experiments on nitrate and nitrate in simulated primeval conditions. — Origins Life 9: 291–298.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Betlach, M.R. Evolution of bacterial denitrification and denitrifier diversity. Antonie van Leeuwenhoek 48, 585–607 (1983). https://doi.org/10.1007/BF00399543

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00399543

Keywords

Navigation