Skip to main content
Log in

Proteolytic systems in lactic acid bacteria

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The proteolytic systems of lactic acid bacteria are important as a means of making protein and peptide N available for growth and as part of the curing or maturation processes which give foods their characteristic rheological and organoleptic properties. The proteolytic systems of lactic acid bacteria are described in relation to their growth and their functions in protein-rich foods. Their role in the manufacture of milk products is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Argyle, P. J., Mathison, G. E. and Chandan, R. C. 1976. Production of cell-bound proteinase by Lactobacillus bulgaricus and its location in the bacterial cell. — J. Appl. Bacteriol. 41: 175–184.

    Google Scholar 

  • Barnes, E. M., Mead, G. C., Impey, C. S. and Adams, B. W. 1979. Spoilage organisms in refrigerated poultry meat. p. 101–116. In A. D. Russell and R. Fuller (eds), Cold Tolerant Microbes in Spoilage and the Environment, SAB Technical Series, Vol. 13. — Academic Press, London.

    Google Scholar 

  • Blood, R. M. 1975. Lactic acid bacteria in marinated herring. p. 195–208. In J. G. Carr, C. V. Cutting and G. C. Whiting (eds), Lactic Acid Bacteria in Beverages and Foods. Fourth Long Ashton Symposium 1973. — Academic Press, London.

    Google Scholar 

  • Bracquart, P. and Lorient, D. 1979. Effet des acides aminés et peptides sur la croissance de Streptococcus thermophilus III. Peptides comportant Glu, His et Met. — Milchwissenschaft 34: 676–679.

    Google Scholar 

  • Brock, T. D. and Wooley, S. O. 1964. Glycylglycine uptake in streptococci and a possible role of peptides in amino acid transport. — Arch. Biochem. Biophys. 105: 51–57.

    Google Scholar 

  • Castberg, H. B. and Morris, H. A. 1976. Degradation of milk proteins by enzymes from lactic acid bacteria used in cheese-making. A review. — Milchwissenschaft 31: 85–90.

    Google Scholar 

  • Castegnaro, M. and Walker, E. A. 1980. Collaborative studies on nitrosamines in cheese and pesticides. p. 445–453. In E. A. Walker (ed.), N-Nitroso Compounds: Analysis, Formation and Occurrence. — IARC Scientific Publications, Lyon.

    Google Scholar 

  • Chandan, R. C., Argyle, P. J. and Mathison, G. E. 1982. Action of Lactobacillus bulgaricus proteinase preparations on milk proteins. — J. Dairy Sci. 65: 1408–1413.

    Google Scholar 

  • Chiba, Y. and Sato, Y. 1980. Bitter peptide degradation by extracts of lactic acid bacteria. —Jpn. J. Dairy Food Sci. 29: 161–167.

    Google Scholar 

  • Cowman, R. A. and Speck, M. L. 1967. Proteinase enzyme system of lactic streptococci I. Isolation and partial characterization. — Appl. Microbiol. 15: 851–856.

    Google Scholar 

  • Cowman, R. A., Swaisgood, H. E. and Speck, M. L. 1967. Proteinase enzyme system of lactic streptococci II. Role of membrane proteinase in cellular function. — J. Bacteriol. 94:942–948.

    Google Scholar 

  • Cowman, R. A., Yoshimura, S. and Swaisgood, H. E. 1968. Proteinase enzyme system of lactic streptococci III. Substrate specificity of Streptococcus lactis intracellular proteinase. — J. Bacteriol. 95: 181–187.

    Google Scholar 

  • Creamer, L. K. and Olson, N. F. 1982. Rheological evaluation of maturing Cheddar cheese. —J. Food Sci. 47: 631–646.

    Google Scholar 

  • Creamer, L. K. and Richardson, B. C. 1974. Identification of the primary degradation product of αs1-casein in Cheddar cheese. — N. Z. J. Dairy Sci. Technol. 9: 9–13.

    Google Scholar 

  • Czulak, J. 1959. Bitter flavour in cheese. — Austr. J. Dairy Technol. 14: 177–179.

    Google Scholar 

  • Dahlberg, A. C. and Kosikowsky, F. V. 1948. The relationship of the amount of tyramine and the numbers of Streptococcus faecalis to the intensity of flavor in American Cheddar cheese. — J. Dairy Sci. 31: 305–314.

    Google Scholar 

  • Dainty, R. H., Shaw, B. G., Harding, C. D. and Michanie, S. 1979. The spoilage of vacuum packaged beef by cold tolerant bacteria. p. 83–100. In A. D. Russell and R. Fuller (eds), Cold Tolerant Microbes in Spoilage and the Environment, SAB Technical Series, Vol. 13. — Academic Press, London.

    Google Scholar 

  • Davies, F. L. and Gasson, M. J. 1981. Reviews of the progress of dairy science: Genetics of lactic acid bacteria. — J. Dairy Res. 48: 363–376.

    Google Scholar 

  • Desmazeaud, M. J. and Hermier, J. H. 1972. Isolement et détermination de la composition qualitative de peptides issus de la caséine, stimulant la croissance de Streptococcus thermophilus. — Eur. J. Biochem. 28: 190–198.

    Google Scholar 

  • Desmazeaud, M. J. and Juge, M. 1976. Caractérisation de l'activité protéolytique et fractionnement des dipeptidases et des aminopeptidases de Streptococcus thermophilus. — Lait 56: 241–260.

    Google Scholar 

  • Desmazeaud, M. J. and Zevaco, C. 1976. General properties and substrate specificity of an intracellular neutral protease from Streptococcus diacetilactis. — Ann. Biol. Anim. Bioch. Biophys. 16: 851–868.

    Google Scholar 

  • Desmazeaud, M. J. and Zevaco, C. 1977. General properties and substrate specificity of an intracellular soluble dipeptidase from Streptococcus diacetilactis. — Ann. Biol. Anim. Bioch. Biophys. 17: 723–736.

    Google Scholar 

  • Desmazeaud, M. J. and Zevaco, C. 1979. Isolation and general properties of two intracellular amino peptidases of Streptococcus diacetylactis. — Milchwissenschaft 34: 606–610.

    Google Scholar 

  • Edwards, S. T. and Sandine, W. E. 1981. Public health significance of amines in cheese. — J. Dairy Sci. 64: 2431–2438.

    Google Scholar 

  • Eggimann, B. and Bachmann, M. 1980. Purification and partial characterization of an aminopeptidase from Lactobacillus lactis. — Appl. Environ. Microbiol. 40: 876–882.

    Google Scholar 

  • El Soda, M., Bergere, J.-L. and Desmazeaud, M. J. 1978b. Detection and localization of peptide hydrolases in Lactobacillus casei. — J. Dairy Res. 45: 519–524.

    Google Scholar 

  • El Soda, M. and Desmazeaud, M. J. 1981. General properties of a new ribosomal aryl-peptidyl amidase in Lactobacillus casei. — Agric. Biol. Chem. 45: 1693–1700.

    Google Scholar 

  • El Soda, M. and Desmazeaud, M. J. 1982. Les peptide-hydrolases des lactobacilles du groupe Thermobacterium. I. Mise en évidence de ces activités chez Lactobacillus helveticus, L. acidophilus, L. lactis et L. bulgaricus. — Can. J. Microbiol. 28: 1181–1188.

    Google Scholar 

  • El Soda, M., Desmazeaud, M. J. and Bergere, J.-L. 1978a. Peptide hydrolases of Lactobacillus casei: Isolation and general properties of various peptidase activities. — J. Dairy Res. 45: 445–455.

    Google Scholar 

  • El Soda, M., Zeyada, N., Desmazeaud, M. J., Mashaly, R. and Ismail, A. 1982. Les peptidehydrolases des lactobacilles du groupe Betabacterium. Mise en évidence chez Lactobacillus brevis, L. fermentum, L. buchneri et L. cellobiosus. — Sci. Aliment. 2: 261–273.

    Google Scholar 

  • Exterkate, F. A. 1975. An introductory study of the proteolytic system of Streptococcus cremoris strain HP. — Neth. Milk Dairy J. 29: 303–318.

    Google Scholar 

  • Exterkate, F. A. 1976. Comparison of strains of Streptococcus cremoris for proteolytic activities associated with the cell wall. — Neth. Milk Dairy J. 30: 95–105.

    Google Scholar 

  • Exterkate, F. A. 1977. Pyrrolidone carboxylyl peptidase in Streptococcus cremoris: dependence on an interaction with membrane components. — J. Bacteriol. 129: 1281–1288.

    Google Scholar 

  • Exterkate, F. A. 1979a. Accumulation of proteinase in the cell wall of Streptococcus cremoris AM1 and regulation of its production. — Arch. Microbiol. 120: 247–254.

    Google Scholar 

  • Exterkate, F. A. 1979b. Effect of membrane perturbing treatments on the membrane-bound peptidases of Streptococcus cremoris HP. — J. Dairy Res. 46: 473–484.

    Google Scholar 

  • Fleming, H. P. 1982. Fermented vegetables. p. 228–258. In A. H. Rose (ed.), Economic Microbiology, Vol. 7. — Academic Press, London.

    Google Scholar 

  • Ford, J. E. 1962. A microbiological method for assessing the nutrition of proteins. 2. Measurement of “available” methionine, leucine, isoleucine, arginine, histidine, tryptophan and valine. — Brit. J. Nutr. 16: 409–425.

    Google Scholar 

  • Garnier, J., Gaye, P., Mercier, J.-C. and Robson, B. 1980. Structural properties of signal peptides and their membrane insertion. — Biochimie 62: 231–239.

    Google Scholar 

  • Gasson, M. J. 1980. Production, regeneration and fusion of protoplasts in lactic streptococci. —FEMS Microbiol. Lett. 9: 99–102.

    Google Scholar 

  • Gasson, M. J. 1983. Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci by protoplast-induced curing. — J. Bacteriol. 154: 1–9.

    Google Scholar 

  • Gripon, J. C., Desmazeaud, M. J., Le Bars, D. and Bergere, J.-L. 1975. Etude du rôle des microorganismes et des enzymes au cours de la maturation des fromages II. Influence de la presure commerciale. — Lait 55: 502–516.

    Google Scholar 

  • Hemme, D. H., Schmal, V. and Auclair, J. E. 1981. Effect of the addition of extracts of thermophilic lactobacilli on acid production by Streptococcus thermophilus in milk. — J. Dairy Res. 48: 139–148.

    Google Scholar 

  • Hill, R. D., Lahav, E. and Givol, D. 1974. A rennin-sensitive bond in αs1 B-casein. — J. Dairy Res. 41: 147–153.

    Google Scholar 

  • Hurst, A. and Collins-Thompson, D. L. 1979. Food as a bacterial habitat. p. 79–134. In M. Alexander (ed.), Advances in Microbial Ecology, Vol. 3. — Plenum Press, New York.

    Google Scholar 

  • Hwang, I.-K., Kaminogawa, S. and Yamauchi, K. 1981. Purification and properties of a dipeptidase form Streptococcus cremoris. — Agric. Biol. Chem. 45: 159–165.

    Google Scholar 

  • Kitchell, A. G. and Shaw, B. 1975. Lactic acid bacteria in fresh and cured meat. p. 209–220. In J. G. Carr, C. V. Cutting and G. C. Whiting (eds), Lactic Acid Bacteria in Beverages and Foods. Fourth Long Ashton Symposium 1973. — Academic Press, London.

    Google Scholar 

  • Kolstad, J. and Sørhaug, T. 1982. Characterization of peptidase from Streptococcus lactis subsp. diacetylactis. — Proc. XXI Intern. Dairy Congr., Moscow, Brief Commun., Vol. 1, Book 2, p. 321–322.

    Google Scholar 

  • Law, B. A. 1977. Dipeptide utilization by starter streptococci. — J. Dairy Res. 44: 309–317.

    Google Scholar 

  • Law, B. A. 1978. Peptide utilization by group N streptococci. — J. Gen. Microbiol. 105: 113–118.

    Google Scholar 

  • Law, B. A. 1979. Extracellular peptidases in group N streptococci used as cheese starters. — J. Appl. Bacteriol. 46: 455–463.

    Google Scholar 

  • Law, B. A. 1980. Transport and utilization of proteins by bacteria. p. 381–409. In J. W. Payne (ed.), Microorganisms and Nitrogen Sources. — John Wiley and Sons, Chichester.

    Google Scholar 

  • Law, B. A. 1982. Cheeses. p. 148–198. In A. H. Rose (ed.), Economic Microbiology, Vol. 7. —Academic Press, London.

    Google Scholar 

  • Law, B. A., Sezgin, E. and Sharpe, M. E. 1976. Amino acid nutrition of some commercial cheese starters in relation to their growth in peptone-supplemented whey media. — J. Dairy Res. 43: 291–300.

    Google Scholar 

  • Law, B. A., Sharpe, M. E. and Reiter, B. 1974. The release of intracellular dipeptidase from starter streptococci during Cheddar cheese ripening. — J. Dairy Res. 41: 137–146.

    Google Scholar 

  • Leach, F. R. and Snell, E. E. 1960. The absorption of glycine and alanine and their peptides by Lactobacillus casei. — J. Biol. Chem. 235: 3523–3531.

    Google Scholar 

  • Lees, G. J. and Jago, G. R. 1976a. Acetaldehyde: an intermediate in the formation of ethanol from glucose by lactic acid bacteria. — J. Dairy Res. 43: 63–73.

    Google Scholar 

  • Lees, G. J. and Jago, G. R. 1976b. Formation of acetaldehyde from threonine by lactic acid bacteria. — J. Dairy Res. 43: 75–83.

    Google Scholar 

  • Lowrie, R. J. and Lawrence, R. C. 1972. A new hypothesis to account for the development of bitterness. — N. Z. J. Dairy Sci. Technol. 7: 51–53.

    Google Scholar 

  • Lowrie, R. J., Lawrence, R. C. and Peberdy, M. F. 1974. Cheddar cheese flavour V. Influence of bacteriophage and cooking temperature on cheese made under controlled bacteriological conditions. — N. Z. J. Dairy Sci. Technol. 9: 116–121.

    Google Scholar 

  • Mills, O. E. and Thomas, T. D. 1978. Release of cell wall-associated proteinase(s) from lactic streptococci. — N. Z. J. Dairy Sci. Technol. 13: 209–215.

    Google Scholar 

  • Mills, O. E. and Thomas, T. D. 1980. Bitterness development in Cheddar cheese: effect of the level of starter proteinase. — N. Z. J. Dairy Sci. Technol. 15: 131–141.

    Google Scholar 

  • Mills, O. E. and Thomas, T. D. 1981. Nitrogen sources for growth of lactic streptococci in milk. — N. Z. J. Dairy Sci. Technol. 16: 43–55.

    Google Scholar 

  • Mora, J. and Snell, E. E. 1963. The uptake of amino acids by cells and protoplasts of S. faecalis. — Biochemistry 2: 136–141.

    Google Scholar 

  • Morishita, T., Deguchi, Y., Yajima, M., Sakurai, T. and Yura, T. 1981. Multiple nutritional requirements of lactobacilli: genetic lesions affecting amino acid biosynthetic pathways. — J. Bacteriol. 148: 64–71.

    Google Scholar 

  • Mou, L., Sullivan, J. J. and Jago, G. R. 1975. Peptidase activities in group N streptococci. —J. Dairy Res. 42: 147–155.

    Google Scholar 

  • Ohmiya, K. and Sato, Y. 1975. Purification and properties of intracellular proteinase from Streptococcus cremoris. — Appl. Microbiol. 30: 738–745.

    Google Scholar 

  • O'Keeffe, R. B., Fox, P. F. and Daly, C. 1976. Contribution of rennet and starter proteases to proteolysis in Cheddar cheese. — J. Dairy Res. 43: 97–107.

    Google Scholar 

  • Pearce, L. E., Skipper, N. A. and Jarvis, B. D. W. 1974. Proteinase activity in slow lactic acidproducing variants of Streptococcus lactis. — Appl. Microbiol. 27: 933–937.

    Google Scholar 

  • Pedersen, E. 1980. Formation and occurrence of volatile nitrosamines in Danish cheese. p. 493–500. In E. A. Walker (ed.), N-Nitroso Compounds: Analysis, Formation and Occurrence. — IARC Scientific Publications, Lyon.

    Google Scholar 

  • Pollock, M. R. 1962. Exoenzymes. p. 121–178. In I. C. Gunsalus and R. Y. Stanier (eds), The Bacteria, Vol. IV. — Academic Press, New York.

    Google Scholar 

  • Rabier, D. and Desmazeaud, M. J. 1973. Inventaire des différentes activités peptidasiques intracellulaires de Streptococcus thermophilus. Purification et proprietés d'une dipeptide-hydrolase et d'une aminopeptidase. — Biochimie 55: 389–404.

    Google Scholar 

  • Reiter, B. and Oram, J. D. 1962. Nutritional studies on cheese starters. 1. Vitamin and amino acid requirements of single strain starters. — J. Dairy Res. 29: 63–79.

    Google Scholar 

  • Reiter, B., Sorokin, Y., Pickering, A. and Hall, A. J. 1969. Hydrolysis of fat and protein in small cheeses made under aseptic conditions. — J. Dairy Res. 36: 65–76.

    Google Scholar 

  • Reuter, G. 1975. Classification problems, ecology and some biochemical activities of lactobacilli of meat products. p. 221–229. In J. G. Carr, C. V. Cutting and G. C. Whiting (eds), Lactic Acid Bacteria in Beverages and Foods. Fourth Long Ashton Symposium 1973. — Academic Press, London.

    Google Scholar 

  • Rice, G. H., Stewart, F. H. C., Hillier, A. J. and Jago, G. R. 1978. The uptake of amino acids and peptides by Streptococcus lactis. — J. Dairy Res. 45: 93–107.

    Google Scholar 

  • Richardson, B. C. and Creamer, L. K. 1973. Casein proteolysis and bitter peptides in Cheddar cheese. — N. Z. J. Dairy Sci. Technol. 8: 46–51.

    Google Scholar 

  • Searles, M. A., Argyle, P. J., Chandan, R. C. and Gordon, J. F. 1970. Lipolytic and proteolytic activities of lactic cultures. — Proc. XVIII Intern. Dairy Congr., Sydney, Brief Commun., Vol.1E, p. 111.

  • Shankar, P. A. 1977. Interrelationships of Streptococcus thermophilus and Lactobacillus bulgaricus in yogurt culture. — Thesis, University of Reading.

  • Shankar, P. A. and Davies, F. L. 1978. Proteinase and peptidase activities of yogurt starter bacteria. — Proc. XX Intern. Dairy Congr., Paris, Brief Commun., p. 467–468.

  • Sharpe, M. E. and Franklin, J. G. 1962. Production of hydrogen sulphide by lactobacilli isolated from Cheddar cheese. — Proc. XVI Intern. Dairy Congr., Copenhagen, B.

  • Shelton, D. C. and Nutter, W. E. 1964. Uptake of valine and glycylvaline by Leuconostoc mesenteroides. — J. Bacteriol. 88: 1175–1184.

    Google Scholar 

  • Shires, T. K., Pitot, H. C. and Kauffman, S. A. 1974. The membron: a functional hypothesis for the translation regulation of genetic expression. — Biomembranes 5: 81–145.

    Google Scholar 

  • Smith, W. P., Tai, P.-C., Thompson, R. C. and Davis, B. D. 1977. Extracellular labeling of nascent polypeptides traversing the membrane of Escherichia coli. — Proc. Natl Acad. Sci. USA 74: 2830–2834.

    Google Scholar 

  • Sørhaug, T. and Kolstad, J. 1981. Peptide hydrolases of group N streptococci. Review of research at the Dairy Research Institute, Ås-NLH, Norway. — Neth. Milk Dairy J. 35: 338–343.

    Google Scholar 

  • Sørhaug, T. and Solberg, P. 1973. Fractionation of dipeptidase activities of Streptococcus lactis and dipeptidase specificity of some lactic acid bacteria. — Appl. Microbiol. 25: 388–395.

    Google Scholar 

  • Stadhouders, J. and Hup, G. 1975. Factors affecting bitter flavour in Gouda cheese. — Neth. Milk Dairy J. 29: 335–353.

    Google Scholar 

  • Sullivan, J. J., Mou, L., Rood, J. I. and Jago, G. R. 1973. The enzymic degradation of bitter peptides by starter streptococci. — Austr. J. Dairy Technol. 28: 20–26.

    Google Scholar 

  • Terzaghi, B. E. and Sandine, W. E. 1975. Improved medium for lactic streptococci and their bacteriophages. — Appl. Microbiol. 29: 807–813.

    Google Scholar 

  • Thomas, T. D., Jarvis, B. D. W. and Skipper, N. A. 1974. Localization of proteinase(s) near the cell surface of Streptococcus lactis. — J. Bacteriol. 118: 329–333.

    Google Scholar 

  • Thomas, T. D. and Mills, O. E. 1981. Proteolytic enzymes of starter bacteria. — Neth. Milk Dairy J. 35: 255–273.

    Google Scholar 

  • Vedamuthu, E. R. 1982. Fermented milks. p. 199–225. In A. H. Rose (ed.), Economic Microbiology, Vol. 7. — Academic Press, London.

    Google Scholar 

  • Vegarud, G., Castberg, H. B. and Langsrud, T. 1982. Influence of ion-strength and proteases on autolysis of lactic streptococci. — Proc. XXI Intern. Dairy Congr., Moscow, Brief Commun., Vol. 1, Book 2, p. 384.

  • Vegarud, G. and Langsrud, T. 1982. Growth and autolysis of Streptococcus diacetylactis ATCC-15346 and Streptococcus lactis L-2 in milk. — Proc. XXI Intern. Dairy Congr., Moscow, Brief Commun., Vol. 1, Book 2, p. 383.

  • Vescovo, M. and Bottazzi, V. 1979. Caratteristiche dei bacilli lattici presenti nelle colture naturali in siero. 6 parte: Localizzazione citologica del sistema proteolytico in L. helveticus. — Sci. Tecn. Latt.-cas. 30: 434–437.

    Google Scholar 

  • Visser, F. M. W. 1977. Contribution of enzymes from rennet, starter bacteria and milk to proteolysis and flavour development of Gouda cheese. 2. Development of bitterness and cheese flavour. — Neth. Milk Dairy J. 31: 188–209.

    Google Scholar 

  • Williamson, W. T., Tove, S. B. and Speck, M. L. 1964. Extracellular proteinase of Streptococcus lactis. — J. Bacteriol. 87: 49–53.

    Google Scholar 

  • Wood, J. B. 1982. Soy sauce and miso. p. 39–86. In A. H. Rose (ed.), Economic Microbiology, Vol. 7. — Academic Press, London.

    Google Scholar 

  • Zevaco, C. and Desmazeaud, M. J. 1980. Hydrolysis of β-casein and peptides by intracellular neutral protease of Streptococcus diacetylactis. — J. Dairy Sci. 63: 15–24.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

British Council Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Law, B.A., Kolstad, J. Proteolytic systems in lactic acid bacteria. Antonie van Leeuwenhoek 49, 225–245 (1983). https://doi.org/10.1007/BF00399500

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00399500

Keywords

Navigation