Abstract
The term “lactic acid bacteria” is discussed. An overview of the following topics is given: main pathways of homo- and heterofermentation of hexoses, i.e. glycolysis, bifidus pathway, 6-phosphogluconate pathway; uptake and dissimilation of lactose (tagatose pathway); fermentation of pentoses and pentitols; alternative fates of pyruvate, i.e. splitting to formate and acetate, CO2 and acetate or formation of acetoin and diacetyl; lactate oxidation; biochemical basis for the formation of different stereoisomers of lactate.
Similar content being viewed by others
References
Anderson, D. G. and McKay, L. L. 1977. Plasmids, loss of lactose metabolism, and appearance of partial and full lactose-fermenting revertants in Streptococcus cremoris B1. — J. Bacteriol. 129, 367–377.
Archibald, F. S. and Fridovich, I. 1981. Manganese and defenses against oxygen toxicity in Lactobacillus plantarum. — J. Bacteriol. 145: 442–451.
Archibald, F. S. and Fridovich, I. 1982. The scavenging of superoxide radical by manganous complexes: in vitro. — Arch. Biochem. Biophys. 214: 452–463.
Barre, P. 1978. Identification of thermobacteria and homofermentative, thermophilic, pentoseutilizing lactobacilli from high temperature fermenting grape musts. — J. Appl. Bacteriol. 44: 125–129.
Bissett, D. L. and Anderson, R. L. 1974. Lactose and d-galactose metabolism in group N streptococci: presence of enzymes for both the d-galactose 1-phosphate and d-tagatose 6-phosphate pathways. — J. Bacteriol. 117: 318–320.
Brown, J. P. and VanDemark, P. J. 1968. Respiration of Lactobacillus casei. — Can. J. Microbiol. 14: 829–835.
Cori, C. F. and Cori, G. T. 1929. Glycogen formation in the liver from d- and l-lactic acid. —J. Biol. Chem. 81: 389–403.
Crow, V. L., Davey, G. P., Pearce, L. E. and Thomas, T. D. 1983. Plasmid linkage of the d-tagatose 6-phosphate pathway in Streptococcus lactis: effect on lactose and galactose metabolism. — J. Bacteriol. 153: 76–83.
De Vries, W., Kapteijn, W. M. C., Van der Beek, E. G. and Stouthamer, A. H. 1970. Molar growth yields and fermentation balances of Lactobacillus casei 13 in batch cultures and in continuous cultures. — J. Gen. Microbiol. 63: 333–345.
De Vries, W. and Stouthamer, A. H. 1968. Fermentation of glucose, lactose, galactose, mannitol, and xylose by bifidobacteria. — J. Bacteriol. 96: 472–478.
Dirar, H. and Collins, E. B. 1972. End-products, fermentation balances and molar growth yields of homofermentative lactobacilli. — J. Gen. Microbiol. 73: 233–238.
Dirar, H. and Collins, E. B. 1973. Aerobic utilization of low concentrations of galactose by Lactobacillus plantarum — J. Gen. Microbiol. 78: 211–215.
Doelle, H. W. 1975. Bacterial Metabolism, 2nd ed. — Academic Press, New York.
Dunlop, R. H. and Hammond, P. B. 1965. d-Lactic acidosis of ruminants. — Ann. N. Y. Acad. Sci. 119: 1109–1152.
FAO/WHO 1967. Expert Committee on Food Additives. — WHO/Food Add. 29: 144–148.
Fukui, S., Oi, A., Obayashi, A. and Kitahara, K. 1957. Studies on the pentose metabolism by microorganisms. I. A new type-lactic acid fermentation of pentoses by lactic acid bacteria. —J. Gen. Appl. Microbiol. 3: 258–268.
Giesecke, D., Fabritius, A. and Van Wallenberg, P. 1981. A quantitative study on the metabolism of d(-) lactic acid in the rat and the rabbit. — Comp. Biochem. Physiol. 69B: 85–89.
Gottschalk, G. 1979. Bacterial Metabolism.—Springer, New York.
Götz, F., Elstner, E. F., Sedewitz, B. and Lengfelder, E. 1980a. Oxygen utilization by Lactobacillus plantarum. II. Superoxide and superoxide dismutation—Arch. Microbiol. 125: 215–220.
Götz, F. and Lengfelder, E. 1983. On the mechanism of the catalytic scavenging of superoxide radical by manganese pyrophosphate: a pulse radiolysis study.—Proc. Third Intern. Conf. on Superoxide and Superoxide Dismutases, New York, in press.
Götz, F., Sedewitz, B. and Elstner, E. F. 1980b. Oxygen utilization by Lactobacillus plantarum. I. Oxygen consuming reactions.—Arch. Microbiol. 125: 209–214.
Greenblatt, J. and Schleif, R. 1971. Arabinose C protein: regulation of the arabinose operon in vitro.—Nature New Biol. 233: 166–170.
Gunsalus, I. C., Dolin, M. I. and Struglia, L. 1952. Pyruvic acid metabolism. III. A manometric assay for pyruvate oxidation factor.—J. Biol. Chem. 194: 849–857.
Hager, L. P., Geller, D. M. and Lipmann, F. 1954. Flavoprotein-catalyzed pyruvate oxidation in Lactobacillus delbrueckii.—Fed. Proc. 13: 734–738.
Hensel, R., Mayr, U., Lins, C. and Kandler, O. 1981. Amino acid sequence of a dodecapeptide from the substrate-binding region of the l-lactate dehydrogenase from Lactobacillus curvatus, Lactobacillus xylosus and Bacillus stearothermophilus.—Hoppe-Seyler's Z. Physiol. Chem. 362: 1031–1036.
Hensel, R., Mayr, U., Stetter, K. O. and Kandler, O. 1977. Comparative studies of lactic acid dehydrogenases from Lactobacillus casei ssp. casei and Lactobacillus curvatus.—Arch. Microbiol. 112: 81–93.
Höchst, M. 1979. Untersuchungen zur Laktatoxidation bei Lactobazillen. — Dissertation, Universität München.
Hontebeyrie, M. and Gasser, F. 1975. Comparative immunological relationships of two distinct sets of isofunctional dehydrogenases in the genus Leuconostoc.—Intern. J. System. Bacteriol. 25: 1–6.
Ingram, M. 1975. The lactic acid bacteria—a broad view. p. 1–13. In J. G. Carr, C. V. Cutting, and G. C. Whiting (eds), Lactic Acid Bacteria in Beverages and Foods. Fourth Long Ashton Symposium 1973.—Academic Press, London.
Irr, J. and Englesberg, E. 1970. Nonsense mutants in the regulator gene araC of the l-arabinose system of Escherichia coli B/r.—Genetics 65: 27–39.
Johnson, K. G. and McDonald, I. J. 1974. β-d-Phosphogalactosicde galactohydrolase from Streptococcus cremoris HP: purification and enzyme properties.—J. Bacteriol. 117: 667–674.
Jönsson, H. and Pettersson, H.-E. 1977. Studies on the citric acid fermentation in lactic starter cultures with special interest in α-aceto-lactic acid. 2. Metabolic studies.—Milchwissenschaft 32: 587–594.
Kandler, O. 1981. Archaebakterien und Phylogenie der Organisment.—Naturwissenschaften 68: 183–192.
Katz, L. 1970. Selection of araB and araC mutants of Escherichia coli b/r by resistance to ribitol. —J. Bacteriol. 102, 593–595.
Kitahara, K., Obayashi, A. and Fukui, S. 1957. On the lactic acid recemase (racemiase) of lactic acid bacteria, with a special reference to the process of its formation.—Proc. Intern. Symp. Enzyme Chemistry, Tokyo and Kyoto, p. 460–463.
Kono, Y., Takahashi, M.-A. and Asada, K. 1976. Oxidation of manganous pyrophosphate by superoxide radicals and illuminated spinach chloroplasts.—Arch. Biochem. Biophys. 174: 454–462.
Krusch, U. 1978. Ernährungsphysiologische Gesichtspunkte der l (+) und d (-)-Milchsäure.—Milchwirtsch. Forsch. Ber. 30: 341–346.
Kunath, P. and Kandler, O. 1980. Der Gehalt und l(+)- und d(-)-Milchsãure in Joghurtprodukten. — Milchwissenschaft 35: 470–473.
Lauer, E., Helming, Ch. and Kandler, O. 1980. Heterogeneity of the species Lactobacillus acidophilus (Moro) Hansen and Moquot as revealed by biochemical characteristics and DNA-DNA hybridisation.—Zbl. Bakt. Hyg., I. Abt. Orig. C 1: 150–168.
Lauer, E. and Kandler, O. 1976. Mechanismus der Variation des Verhältnisses Acetat/Lactat bei der Vergärung von Glucose durch Bifidobakterien.—Arch. Microbiol. 110: 271–277.
Lawrence, R. C. and Thomas, T. D. 1979. The fermentation of milk by lactic acid bacteria. p. 187–219. In A. T. Bull, D. C. Ellwood and C. Ratledge (eds), Microbial Technology: Current State, Future Prospects. Soc. Gen. Microbiol., Symp. 29.—University Press, Cambridge.
London, J. 1968. Regulation and function of lactate oxidation in Streptococcus faecium.—J. Bacteriol. 95: 1380–1387.
London, J. 1976. The ecology and taxonomic status of the lactobacilli.—Ann. Rev. Microbiol. 30: 279–301.
London, J. and Chace, N. M. 1977. New pathway for the metabolism of pentitols.—Proc. Natl Acad. Sci. USA 74: 4296–4300.
London, J. and Chace, N. M. 1979. Pentitol metabolism in Lactobacillus casei.—J. Bacteriol. 140: 949–954.
London, J., Chase, N. M. and Kline, K. 1975. Aldolases of lactic acid bacteria: immunological relationships among aldolases of streptococci and gram-positive nonsporeforming anaerobes. —Intern. J. System. Bacteriol. 25: 114–123.
Lumsden, J. and Hall, D. O. 1975. Chloroplast manganese and superoxide.—Biochem. Biophys. Res. Commun. 64: 595–602.
Mayr, U., Hensel, R. and Kandler, O. 1982. Subunit composition and substrate binding region of potato l-lactate dehydrogenase.—Phytochemistry 21: 627–731.
McKay, L., Miller III, A., Sandine, W. E. and Elliker, P. R. 1970. Mechanisms of lactose utilization by lactic acid streptococci: enzymatic and genetic analyses.—J. Bacteriol. 102: 804–809.
O'Kane, D. J. and Gunsalus, I. C. 1948. Pyruvic acid metabolism. A factor required for oxidation by Streptococcus faecalis.—J. Bacteriol. 56: 499–506.
Orla-Jensen, S. 1919. The Lactic Acid Bacteria.—Anhr. Fred. Høst and Søn, Copenhagen.
Postma, P. W. and Roseman, S. 1976. The bacterial phosphoenolpyruvate: sugar phosphotransferase system.—Biochim. Biophys. Acta 457: 213–257.
Premi, L., Sandine, W. E. and Elliker, P. R. 1972. Lactose-hydrolyzing enzymes of Lactobacillus species.—Appl. Microbiol. 24: 51–57.
Scardovi, V. 1982. The genus Bifidobacterium. p. 1951–1961. In M. P. Starr, H. Stolp, H. G. Trüper, A. Balows and H. G. Schlegel (eds), The Prokaryotes.—Springer, Berlin.
Sheppard, D. and Englesberg, E. 1966. Positive control in the l-arabinose gene-enzyme complex of Escherichia B/r as exhibited with stable merodiploids—Cold Spring Harbor Symp. Quant. Biol. 31: 345–347.
Sheppard, D. E. and Englesberg, E. 1967. Further evidence for positive control of the l-arabinose system by gene araC.—J. Mol. Biol. 25: 443–454.
Snoswell, A. M. 1959. Flavins of Lactobacillus arabinossus 17.5. A lactic dehydrogenase containing a flavin prosthetic group.—Austr. J. Exp. Biol. 37: 49–64.
Snoswell, A. M. 1963. Oxidized nicotinamide-adenine dinucleotide-independent lactate dehydrogenases of Lactobacillus arabinosus 17.5.—Biochim. Biophys. Acta 77: 7–19.
Speck, M. L. 1976. Interactions among lactobacilli and man.—J. Dairy Sci. 59: 338–343.
Speckman, R. A. and Collins, E. B. 1968. Diacety biosynthesis in Streptococcus diacetilactis and Leuconostoc citrovorum.—J. Bacteriol. 95: 174–180.
Speckman, R. A. and Collins, E. B. 1973. Incorporation of radioactive acetate into diacetyl by Streptococcus diacetilactis.—Appl. Microbiol. 26, 744–746.
Stackebrandt, E., Fowler, V. J. and Woese, C. R. 1983. A phylogenetic analysis of lactobacilli, Pediococcus pentosaceus and Leuconostoc mesenteroides.—System. Appl. Microbiol. 4: 326–337.
Stackebrandt, E. and Woese, C. R. 1981. The evolution of prokaryotes. p. 1–31. In M. J. Carlile, J. F. Collins and B. E. B. Moseley (eds), Molecular and Cellular Aspects of Microbial Evolution. Soc. Gen. Microbiol., Symp. 32.—University Press, Cambridge.
Stein, J., Fackler, J. P. Jr., Mc Clune, G. J., Fee, J. A. and Chan, L. T. 1979. Superoxide and manganese. III. Reactions of Mn-EDTA and Mn-CyDTA complexes with O2. X-ray structure of KMn-EDTA. 2H2O.—Inorg. Chem. 18: 3511–3519.
Stetter, H. 1974. Biochemische und bakteriologische Untersuchungen zur Bewetung der Arabinosevergärung als taxonomisches Merkmal bei heterofermentativen Milchsäurebakterien.—Dissertation, Universität München.
Stetter, K. O. 1974. Production of exclusively l(+)-lactic acid containing food by controlled fermentation. —Proc. First Intersect. Congr. JAMS, Tokyo, Vol. 2, p. 164–168.
Stetter, K. O. and Kandler, O. 1973a. Untersuchungen zur Entstehung von dl-Milchäure bei Lactobacillen und Charakterisierung einer Milchsäureracemase bei einigen Arten der Untergattung Streptobacterium.—Arch. Mikrobiol. 94: 221–247.
Stetter, K. O. and Kandler, O. 1973b. Manganese requirement of the transcription processes in Lactobacillus curvatus.—FEBS Lett. 36: 5–8.
Stetter, K. O. and Zillig, W. 1974. Transcription in Lactobacillaceae. DNA-dependent RNA polymerase from Lactobacillus curvatus.—Eur. J. Biochem. 48: 527–540.
Strittmatter, C. F. 1959a. Electron transport to oxygen in lactobacilli.—J. Biol. Chem. 234: 2789–2793.
Strittmatter, C. F. 1959b. Flavin-linked oxidative enzymes of Lactobacillus casei.—J. Biol. Chem. 234: 2794–2800.
Thomas, T. D. 1976. Regulation of lactose fermentation in group N streptococci.—Appl. Environ. Microbiol. 32: 474–478.
Thompson, J. 1979. Lactose metabolism in Streptococcus lactis: phosphorylation of galactose and glucose moieties in vivo.—J. Bacteriol. 140: 774–785.
Thompson, J. 1980. Galactose transport systems in Streptococcus lactis.—J. Bacteriol. 144: 683–691.
Thompson, J. and Thomas, T. D. 1977. Phosphoenolpyruvate and 2-phosphoglycerate: endogenous energy source(s) for sugar accumulation by starved cells of Streptococcus lactis.—J. Bacteriol. 130: 583–595.
Winter, J. 1974. Der Einfluß von organischen Säuren und von Sauerstoff auf die Gär- und Energiebilanz von Leuconostoc und verschiedener Lactobacillen.—Dissertation. Universität München.
Woese, C. R. 1982. Archaebacteria and cellular origins: An overview.—Zbl. Bakt. Hyg., I. Abt. Orig. C3: 1–17.
Zubay, G., Gielow, L. and Englesberg, E. 1971. Cell-free studies on the regulation of the arabinose operon.—Nature New Biol. 223: 164–165.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Kandler, O. Carbohydrate metabolism in lactic acid bacteria. Antonie van Leeuwenhoek 49, 209–224 (1983). https://doi.org/10.1007/BF00399499
Issue Date:
DOI: https://doi.org/10.1007/BF00399499