Skip to main content
Log in

The nature of the competitive ability of spontaneous staphylocoagulase-negative mutants of Staphylococcus aureus with respect to growth of the parent strains in continuous culture

  • Physiology and Growth
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

During prolonged cultivation of S. aureus strains 104 and NCTC 8178 in continuous culture, staphylocoagulase-negative mutants arose and accumulated progressively in increasing proportions. The resulting loss of production of staphylocoagulase was accompanied by a simultaneous loss of production of α-haemolysin and PV-leucocidin. Characterization of the strains revealed no further differences in biotype, exoenzymes, phage pattern and plasmid content.

Cultivation in batch cultures showed that the maximal specific growth rates and specific oxygen-consumption rates of the mutant strains were slightly higher than those of the parent strains, whereas the production of total extracellular protein of the mutant strains had decreased significantly.

From competition experiments between parent and mutant strains in chemostat cultures at different dilution rates and cultivation temperatures, it was concluded that the underlying mechanism of accumulation of staphylocoagulase-negative mutants in the chemostat is based on differences in affinity for the limiting substrate(s) rather than on differences in the production rates of total extracellular proteins. The complete repression of three exoenzymes, a partial repression of the total extracellular protein production, and an increased affinity for the limiting substrate(s) suggested that a mutation in a regulatory gene is involved. The possible role of a transposon in this mutation is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbas-Ali, B. and Coleman, G. 1977. The characteristics of extracellular protein secretion by Staphylococcus aureus (Wood 46) and their relationship to the regulation of α-toxin formation. — J. Gen. Microbiol. 99: 277–282.

    PubMed  Google Scholar 

  • Baird-Parker, A. C. 1963. A classification of micrococci and staphylococci based on physiological and biochemical tests. — J. Gen. Microbiol. 30: 409–427.

    PubMed  Google Scholar 

  • Baird-Parker, A. C., Hill, L. R., Kloos, W. E., Kocur, M., Oeding, P. and Schleifer, K. H. 1976. Appendix 1. Identification of staphylococci. Subcommittee on the Taxonomy of Staphylococci and Micrococci. — Int. J. Syst. Bacteriol. 26: 333–334.

    Google Scholar 

  • Björklind, A. and Arvidson, S. 1980. Mutants of Staphylococcus aureus affected in the regulation of exoprotein synthesis. — FEMS Microbiol. Lett. 7: 203–206.

    Google Scholar 

  • Brown, D. R. and Pattee, P. A. 1980. Identification of chromosomal determinant of alpha-toxin production in Staphylococcus aureus. — Infect. Immun. 30: 36–42.

    PubMed  Google Scholar 

  • Cadness-Graves, B., Williams, R., Harper, G. J. and Miles, A. A. 1943. Slide test for coagulase positive staphylococci. Lancet 1943, I: 736–738.

    Google Scholar 

  • Clarke, S. 1953. A simplified plate method for detecting gelatin liquefying bacteria. — J. Clin. Pathol. 6: 246–248.

    PubMed  Google Scholar 

  • Coleman, G. 1981. Pleiotropic compensation in the regulation of extracellular protein formation by a low α-toxin producing variant of Staphylococcus aureus (Wood 46). — J. Gen. Microbiol. 122: 11–15.

    PubMed  Google Scholar 

  • Coleman, G. and Abbas-Ali, B. 1977. Comparison of the patterns of increase in α-toxin and total extracellular protein by Staphylococcus aureus (Wood 46) grown in media supporting widely differing growth characteristics. — Infect. Immun. 17: 278–281.

    PubMed  Google Scholar 

  • Coleman, G., Brown, S. and Stormonth, D. A. 1975. A model for the regulation of bacterial extracellular enzyme and toxin biosynthesis. — J. Theor. Biol. 52: 143–148.

    PubMed  Google Scholar 

  • Duthie, E. S. and Haughton, G. 1958. Purification of free staphylococcal coagulase. — J. Gen. Microbiol. 70: 125–134.

    Google Scholar 

  • Duval-Iflah, Y., van Heyenoort, J., Rousseau, M. and Raibaud, P. 1977. Lysogenic conversion for multiple characters in a strain of Staphylococcus aureus. — J. Bacteriol. 130: 1281–1291.

    PubMed  Google Scholar 

  • Elek, S. D. and Levy, E. 1954. The nature of discrepancies between haemolysins in culture filtrates and plate haemolysin patterns of staphylococci. — J. Pathol. Bacteriol. 68: 31–40.

    PubMed  Google Scholar 

  • Engels, W., Kamps, M. A. F. and van Boven, C. P. A. 1978. Influence of cultivation conditions on the production of staphylocoagulase by Staphylococcus aureus 104. — J. Gen. Microbiol. 109: 237–243.

    Google Scholar 

  • Engels, W., Kamps, M. A. F. and van Boven, C. P. A. 1980. Continuous culture studies on the production of staphylocoagulase by Staphylococcus aureus. — Antonie van Leeuwenhoek 46: 533–550.

    PubMed  Google Scholar 

  • Evans, C. G. T. 1976. The concept of relative growth rate. p. 346–348. In A. C. R. Dean, D. C. Ellwood, C. G. T. Evans and J. Melling (eds), Continuous culture: application and new fields. Vol. 6 — Ellis Horwood, Chichester.

    Google Scholar 

  • Forsgren, A., Nordström, K., Philipsen, L. and Sjöquist, J. 1971. Protein A mutants of Staphylococcus aureus. — J. Bacteriol. 107: 245–250.

    PubMed  Google Scholar 

  • Gladstone, G. P. and van Heijningen, W. E. 1957. Staphylococcal leucocidins. — Brit. J. Exp. Pathol. 38: 123–131.

    Google Scholar 

  • Godwin, D. and Slater, J. H. 1979. The influence of the growth environment on the stability of a drug resistance plasmid in E. coli K12. — J. Gen. Microbiol. 111: 201–210.

    PubMed  Google Scholar 

  • Goode, R. L. and Baldwin, J. N. 1973. Purification of staphylococcal alpha toxin by electrofocussing. — Prep. Biochem. 3: 349–361.

    PubMed  Google Scholar 

  • Harder, W., Kuenen, J. G. and Matin, A. 1977. A review: Microbial selection in continuous culture. — J. Appl. Bacteriol. 43: 1–24.

    PubMed  Google Scholar 

  • Heckzo, P. B., Grov, A. and Pulverer, G. 1976. Susceptibility of staphylococci of various cell wall structure to lysostaphin and its separated enzymes. p. 43–48. In J. Jeljaszewicz, (ed), Staphylococci and staphylococcal diseases. — Gustav Fischer Verlag, Stuttgart.

    Google Scholar 

  • Herbert, D., Phipps, P. J. and Strange, R. E. 1971. Chemical analysis of microbial cells. p. 209–344. In J. R. Norris and D. J. Ribbons (eds), Methods in microbiology, Vol. 5B. — Academic Press, London and New York.

    Google Scholar 

  • Jannasch, H. W. 1969. Estimation of bacterial growth rates in natural waters. — J. Bacteriol. 99: 156–160.

    PubMed  Google Scholar 

  • Jarvis, A. W., Lawrence, R. C. and Pritchard, G. G. 1975. Glucose repression of enterotoxins A, B and C and other extracellular proteins in staphylococci in batch and continuous culture. — J. Gen. Microbiol. 86: 75–87.

    PubMed  Google Scholar 

  • Jollick, J. D. 1972. Evidence for bacteriophage conversion in Staphylococcus. — Microbios 6: 97–100.

    PubMed  Google Scholar 

  • Kloos, W. E. and Schleifer, K. H. 1975. Simplified scheme for routine identification of human Staphylococcus species. — J. Clin. Microbiol. 1: 82–88.

    PubMed  Google Scholar 

  • Kopecko, D. J. 1980. Involvement of specialized recombination in the evolution and expression of bacterial genomes. p. 165–205. In C. Stuttard and K. R. Rozee, (eds), Plasmids and transposons. Environmental effects and maintenance mechanisms. — Academic Press, New York.

    Google Scholar 

  • Korman, R. Z. 1963. Coagulase-negative mutants of Staphylococcus aureus: genetic studies. — J. Bacteriol. 86: 363–369.

    PubMed  Google Scholar 

  • Lotter, L. P. and Genigeorgis, C. A. 1977. Isolation of coagulase-positive variants from coagulase-negative enterotoxigenic staphylococci. — Zentralbl. Bakteriol. Parasitenkde, Infektionskr. Hyg. Abt. 1: Orig. Reihe A. 239: 18–30.

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. — J. Biol. Chem. 193: 265–275.

    PubMed  Google Scholar 

  • Melling, J., Ellwood, D. C. and Robinson, A. 1977. Survival of R-factor carrying Escherichia coli in mixed cultures in the chemostat. — FEMS Microbiol. Lett. 2: 87–89.

    Article  Google Scholar 

  • Omenn, G. S. and Friedmann, J. 1970. Isolation of mutants of Staphylococcus aureus lacking extracellular nuclease activity. — J. Bacteriol. 101: 921–924.

    PubMed  Google Scholar 

  • Rogolsky, M. 1979. Nonenteric toxins of Staphylococcus aureus. — Microbiol. Rev. 43: 320–360.

    PubMed  Google Scholar 

  • Smith, R. F. and Willett, N. P. 1968. Rapid plate method for screening hyaluronidase and chondroitin sulphate-producing microorganisms. — Appl. Microbiol. 16: 1434–1438.

    PubMed  Google Scholar 

  • Stobberingh, E. E. and Winkler, K. C. 1977. Restriction-deficient mutants of Staphylococcus aureus. — J. Gen. Microbiol. 99: 359–367.

    PubMed  Google Scholar 

  • Tager, M. 1974. Current views on the mechanisms of coagulase action in blood clotting. — Ann. N. Y. Acad. Sci. 236: 277–291.

    PubMed  Google Scholar 

  • Tempest, D. W. 1976. The concept of relative growth rate: its theoretical basis and practical application. p. 349–352. In A. C. R. Dean, D. C. Ellwood, C. G. T. Evans and J. Melling, (eds), Continuous culture: application and new fields. Vol. 6. — Ellis Horwood, Chichester.

    Google Scholar 

  • Van der Vijver, J. C. M. 1972. Virulence factors with induced mutants of Staphylococcus aureus. Ph. D. Thesis. Erasmus University, Rotterdam.

    Google Scholar 

  • de Waart, J., Winkler, K. C. and Grootsen, C. 1962. Lysogenic conversion in staphylococci. — Nature (London) 195: 407–408.

    Google Scholar 

  • Wilson, C. R., Tatten, P. A. and Baldwin, J. N. 1978. Rapid procedure for the detection of plasmids in Staphylococcus epidermidis. — Appl. Environ. Microbiol. 36: 368–374.

    PubMed  Google Scholar 

  • Wiseman, G. M. 1975. The haemolysins of Staphylococcus aureus. — Bacteriol. Rev. 39: 317–344.

    PubMed  Google Scholar 

  • Wouters, J. T. M. and Buysman, P. J. 1977a. Production of some extracellular enzymes by Bacillus licheniformis 749/C in chemostat cultures. — FEMS Microbiol. Lett. 1: 109–112.

    Article  Google Scholar 

  • Wouters, J. T. M. and Buysman, P. J. 1977b. Secretion of penicillinase by Bacillus licheniformis 749/C in chemostat cultures. — FEMS Microbiol. Lett. 1: 321–324.

    Article  Google Scholar 

  • Wouters, J. T. M., Driehuis, F. L., Polaczek, P. J., van Oppenraay, M. L. and van Andel, J. G. 1980. Persistence of the pBR322 plasmid in Escherichia coli K 12 grown in chemostat cultures. — Antonie van Leeuwenhoek 46: 353–362.

    PubMed  Google Scholar 

  • Yoshikawa, M., Matsuda, F., Naka, M., Murofishi, E. and Tsunematsu, Y. 1974. Pleiotropic alterations of activities of several toxins and enzymes in mutants of Staphylococcus aureus. —J. Bacteriol. 119: 117–122.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engels, W., Kamps, M.A.F. The nature of the competitive ability of spontaneous staphylocoagulase-negative mutants of Staphylococcus aureus with respect to growth of the parent strains in continuous culture. Antonie van Leeuwenhoek 48, 67–83 (1982). https://doi.org/10.1007/BF00399489

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00399489

Keywords

Navigation