Skip to main content
Log in

l-Sorbose metabolism in Agrobacterium tumefaciens

  • Biochemistry
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The pathway of l-sorbose metabolism in Agrobacterium tumefaciens strain B6 was determined to be: l-sorbose → d-glucitol (sorbitol) → d-fructose → d-fructose-6-phosphate → d-glucose-6-phosphate. The reduction of l-sorbose and the oxidation of d-glucitol were mediated by NADPH- and NAD+-linked oxidoreductases, respectively. The intermediates, d-glucitol and d-fructose, were isolated from in vitro reaction mixtures by column chromatography on Dowex 1-borate, and identified enzymatically. d-Fructose was identified chemically by its 1H-NMR spectrum and the IR spectrum and the melting point of the fructosazone. d-Glucitol was characterized chemically by the melting point and the IR spectrum of its hexaacetate.

A. tumefaciens ICPB TT111, a representative of another genetic race of Agrobacterium, lacked l-sorbose reductase and therefore failed to grow on l-sorbose; it grew normally on d-glucitol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson, R. L. and Wood, W. A. 1962. Purification and properties of l-xylulokinase. —J. Biol. Chem. 237: 1029–1033.

    Google Scholar 

  • Arthur, L. O., Bulla, L. A. Jr., Julian, G. S. and Nakamura, L. K. 1973. Carbohydrate metabolism in Agrobacterium tumefaciens. — J. Bacteriol. 116: 304–313.

    Google Scholar 

  • Ashwell, G. 1957. Colorimetric analysis of sugars, p. 75–76. In S. P. Colowick and N. O. Kaplan, (ed.), Methods in Enzymology, Vol. 3. — Academic Press, New York and London.

    Google Scholar 

  • Bandurski, R. S. and Axelrod, B. 1951. The chromatographic identification of some biologically important phosphate esters. — J. Biol. Chem. 193: 405–410.

    Google Scholar 

  • Chakravorty, M., Veiga, L. A., Bacila, M. and Horecker, B. L. 1962. Pentose metabolism in Candida. II. The diphosphopyridine nucleotide-specific polyol dehydrogenase of Candida utilis. — J. Biol. Chem. 237: 1014–1020.

    Google Scholar 

  • Cramer, F. B. and Pacsu, E. 1937. Studies in the ketone sugar series. VIII. The structure of l-sorbose pentaacetate. — J. Am. Chem. Soc. 59: 1467–1469.

    Google Scholar 

  • De Bruyn, A., Anteunis, M. and Verhegge, G. 1975. A 1H-n.m.r. study of d-fructose in D2O. — Carbohyd. Res. 41: 295–297.

    Google Scholar 

  • Hollmann, S. and Touster, O. 1964. Non glycolytic pathways of metabolism of glucose, p. 181. — Academic Press, New York and London.

    Google Scholar 

  • Isono, M., Nakanishi, I., Sasajima, K., Motizuki, K., Kanzaki, T., Okazaki, H. and Yoshino, H. 1968. 2-Keto-l-gulonic acid fermentation. Part I. Paper chromatographic characterization of metabolic products from sorbitol and l-sorbose by various bacteria. —Agr. Biol. Chem. 32: 424–431.

    Google Scholar 

  • Kanzaki, T. and Okazaki, H. 1970. 2-Keto-l-gulonic acid fermentation. Part IV. l-Sorbose metabolism in Pseudomonas aeruginosa. — Agr. Biol. Chem. 34: 432–436.

    Google Scholar 

  • Kelker, N. E. and Anderson, R. L. 1971. Sorbitol metabolism in Aerobacter aerogenes. —J. Bacteriol. 105: 160–164.

    Google Scholar 

  • Kelker, N. E., Simkins, R. A. and Anderson, R. L. 1972. Pathway of l-sorbose metabolism in Aerobacter aerogenes. — J. Biol. Chem. 247: 1479–1483.

    Google Scholar 

  • Kersters, K. 1967. Rapid screening assays for soluble and particulate bacterial dehydrogenases. — Antonie van Leeuwenhoek 33: 63–72.

    Google Scholar 

  • Kersters, K., De Ley, J., Sneath, P. H. A. and Sackin, M. 1973. Numerical taxonomic analysis of Agrobacterium. — J. Gen. Microbiol. 78: 227–239.

    Google Scholar 

  • Kersters, K., Wood, W. A. and De Ley, J. 1965. Polyol dehydrogenases of Gluconobacter oxydans. — J. Biol. Chem. 240: 965–974.

    Google Scholar 

  • Kornberg, H. L. and Reeves, R. E. 1972. Inducible phosphoenolpyruvate-dependent hexose phosphotransferase activities in Escherichia coli. — Biochem. J. 128: 1339–1344.

    Google Scholar 

  • Kuhn, L. P. 1950. Infrared spectra of carbohydrates. — Anal. Chem. 22: 276–283.

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. — J. Biol. Chem. 193: 265–275.

    Google Scholar 

  • Ohms, J. I., Zec, J., Benson, J. V. Jr. and Patterson, J. A. 1967. Column chromatography of neutral sugars: operating characteristics and performance of a newly available anion-exchange resin. — Anal. Biochem. 20: 51–57.

    Google Scholar 

  • Okazaki, H., Kanzaki, T., Sasajima, K. and Terada, Y. 1969. 2-Keto-l-gulonic acid fermentation. Part III. Evaluation of the pathway of sorbitol metabolism in Gluconobacter melanogenus. — Agr. Biol. Chem. 33: 207–211.

    Google Scholar 

  • Otting, W. 1961. IR-Spektroskopische Untersuchung von Phenylosazonen. — Liebigs Ann. Chem. 640: 44–52.

    Google Scholar 

  • Pacsu, E. and Rich, F. V. 1933. Studies in the ketone sugar series. III. Open chain derivatives of fructose and turanose. — J. Am. Chem. Soc. 55: 3018–3024.

    Google Scholar 

  • Sato, K., Yamada, Y., Aida, K. and Uemura, T. 1969. Enzymatic studies on the oxidation of sugar and sugar alcohol. VIII. Particle-bound l-sorbose dehydrogenase from Gluconobacter suboxydans. — J. Biochem. 66: 521–527.

    Google Scholar 

  • Sherma, J. and Zweig, G. 1971. Paper chromatography, p. 160. In G. Zweig and J. R. Whitaker, (eds.), Paper chromatography and electrophoresis, Vol. 2. — Academic Press, New York and London.

    Google Scholar 

  • Sols, A., de la Fuente, G., Villar-Palasí, C. and Asensio, C. 1958. Substrate specificity and some other properties of baker's yeast hexokinase. — Biochim. Biophys. Acta 30: 92–101.

    Google Scholar 

  • Speck, J. C. 1962. Periodate oxidation, p. 441–445. In R. L. Whistler and M. L. Wolfrom (eds.). Methods in carbohydrate chemistry, Vol. 1. — Academic Press, New York and London.

    Google Scholar 

  • Stahl, E. 1967. Dünnschichtchromatografie. Ein Laboratoriumshandbuch, 2nd ed., p. 851 (No. 228). — Springer Verlag, Berlin-Heidelberg-New York.

    Google Scholar 

  • Tsukada, Y. and Perlman, D. 1972a. The fermentation of l-sorbose by Gluconobacter melanogenus. I. General characteristics of the fermentation. — Biotechnol. Bioeng. 14: 799–810.

    Google Scholar 

  • Tsukada, Y. and Perlman, D. 1972b. The fermentation of l-sorbose by Gluconobacter melanogenus. III. Investigation of the metabolic pathway from sorbose to 2-keto-l-gulonic acid. — Biotechnol. Bioeng. 14: 1035–1038.

    Google Scholar 

  • Yamanaka, K. and Sakai, S. 1968. Production of polyol dehydrogenases in bacteria. — Can. J. Microbiol. 14: 391–396.

    Google Scholar 

  • Vogel, A. I. 1961. A textbook of practical organic chemistry, 3rd ed., p. 455–457. — Longmans, Green & Co., London Wl.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Keer, C., Kersters, K. & De Ley, J. l-Sorbose metabolism in Agrobacterium tumefaciens . Antonie van Leeuwenhoek 42, 13–24 (1976). https://doi.org/10.1007/BF00399445

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00399445

Keywords

Navigation