Skip to main content
Log in

Immunity to lantibiotics

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Bacteria producing bacteriocins have to be protected from being killed by themselves. This mechanism of self-protection or immunity is especially important if the bacteriocin does not need a specific receptor for its action, as is the case for the type A lantibiotics forming pores in the cytoplasmic membrane. At least two different systems of immunity have evolved in this group of bacteriocins containing modified amino acids as a result of posttranslational modification. The immunity mechanism of Pep5 in Staphylococcus epidermidis is based on inhibition of pore formation by a small 69-amino acid protein weakly associated with the outer surface of the cytoplasmic membrane. In Lactococcus lactis and Bacillus subtilis the putative immunity lipoproteins NisI and SpaI, respectively, are also located at the outer surface of the cytoplasmic membrane, suggesting that a similar mechanism might be utilized by the producers of nisin and subtilin. In addition an ABC-transport system consisting of two membrane proteins, (NisEG, SpaG and the hydrophobic domain of SpaF, and EpiEG) and a cytoplasmic protein (NisF, the cytoplasmic domain of SpaF, and EpiF) play a role in immunity of nisin, subtilin and epidermin by import, export or inhibition of pore formation by the membrane components of the transport systems. Almost nothing is known of the immunity determinants of newly described and other type of lantibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Banerjee S & Hansen JN (1988) Structure and expression of a gene encoding the precursor of subtilin, a small protein antibiotic. J. Biol. Chem. 262: 9508–9514

    Google Scholar 

  • Bierbaum G, Götz F, Peschel A, Kupke T, Kamp M van der & Sahl H-G (1995) The biosynthesis of the lantibiotics epidermin, gallidermin, Pep5 and Epilancin K7. Antonie van Leeuwenhoek (this volume)

  • Bowman CM, Sidikara J & Nomura M (1971) Specific inactivation of ribosomes by colicin E3 in intro and mechanism of immunity in colicinogenic cells. Nature 48: 133–137

    Google Scholar 

  • Buchman GW, Banerjee S & Hansen JN (1988) Structure, expression, and evolution of a gene encoding the precursor of nisin, a small protein antibiotic. J. Biol. Chem. 264: 16260–16266

    Google Scholar 

  • Chung YJ, Steen MT & Hansen JN (1992) The subtilin gene of Bacillus subtilis ATCC 6633 is encoded in an operon that contains a homolog of the hemolysin B transport protein. J. Bacteriol. 174: 1417–1422

    PubMed  Google Scholar 

  • Dodd HM, Horn N & Gasson MJ (1990) Analysis of the genetic determinant for production of the peptide antibiotic nisin. J. Gen. Microbiol. 136: 555–566

    PubMed  Google Scholar 

  • Dodd HM, Horn N, Hao Z & Gasson MJ (1992) A lactococcal expression system for engineered nisins. Appl. Environ. Microbiol. 58: 3683–3693

    PubMed  Google Scholar 

  • Engelke G, Gutowski-Eckel Z, Hammelmann M & Entian K-D (1992) Biosynthesis of the lantibiotic nisin: genomic organization and membrane localization of the NisB protein. Appl. Environ. Microbiol. 58: 3730–3743

    PubMed  Google Scholar 

  • Engelke G, Gutowski-Eckel Z, Kiesau P, Siegers K, Hammelman M & Entian K-D (1994) Regulation of nisin biosynthesis and immunity in Lactococcus lactis 6F3. Appl. Environ. Microbiol. 60: 814–825

    PubMed  Google Scholar 

  • Ersfeld-Dreßen H, Sahl H-G & Brandis H (1984) Plasmid involvement in production of and immunity to the staphylococcin-like peptide Pep5. J. Gen. Microbiol. 130: 3029–3035

    PubMed  Google Scholar 

  • Gasson MJ (1984) Transfer of sucrose fermenting ability, nisin resistance and nisin production into Streptococcus lactis 712. FEMS Microbiol. Lett. 21: 7–10

    Article  Google Scholar 

  • Garrido MC, Herrero M, Kolter R & Moreno F (1988) The export of the DNA replication inhibitor microcin B17 provides immunity for the host cell. EMBO J. 7: 1853–1862

    PubMed  Google Scholar 

  • Gilmore MS, Segarra RA & Booth MC (1990) A HlyB-type function is required for expression of the Enterococcus faecalis hemolysin/bacteriocin. Infect. Immun. 58: 3914–3923

    PubMed  Google Scholar 

  • Gilson E, Alloing G, Schmidt T, Claverys J-P, Dudler R & Hofnung M (1988) Evidence for high affinity binding-protein dependent transport systems in Gram-positive bacteria and in Mycoplasma. EMBO J. 7: 3971–3974

    PubMed  Google Scholar 

  • Graeffe T, Rintala H, Paulin L & Saris P (1991) A natural nisin variant. In: Jung C & Sahl H-G (Eds) Nisin and Novel Lantibiotics. (pp 260–268) ESCOM Leiden

    Google Scholar 

  • Horn N, Swindell S, Dodd H & Gasson M (1991) Nisin biosynthesis genes are encoded by a novel conjugative transposon. Mol. Gen. Genet. 228: 129–135

    Article  PubMed  Google Scholar 

  • Hynes WL, Ferretti JJ & Tagg JR (1993) Cloning of the gene encoding streptococcin A-FF22, a novel lantibiotic produced by Streptococcus pyogenes, and determination of its nucleotide sequence. Appl. Environ. Microbiol. 59: 1961–1971

    Google Scholar 

  • Immonen Y, Ye S, Ra R, Qiao M, Paulin L & Saris PEJ (1995) The codon usage of the nisin Z operon in Lactococcus lactis N8 suggests a non-lactococcal origin of the conjugative nisin-sucrose transposon. Sequence 5: 203–218

    Google Scholar 

  • Kellner R, Jung G, Hörner T, Zähner H, Schell N, Entian K-D & Götz F (1988) Gallidermin: a new lanthionine-containing polypeptide antibiotic. Eur. J. Biochem. 177: 53–59

    PubMed  Google Scholar 

  • Klein C & Entian K-D (1994) Genes involved in self-protection anainst the lantibiotic subtilin produced by Bacillus subtilis ATCC6633. Appl. Environ. Microbiol. 60: 2793–2801

    PubMed  Google Scholar 

  • Klein C, Kaletta C, Schnell N & Entian K-D (1992) Analysis of genes involved in biosynthesis of the lantibiotic subtilin. Appl. Environ. Microbiol. 58: 132–142

    PubMed  Google Scholar 

  • Klein C, Kaletta C & Entian K-D (1993) Biosynthesis of the lantibiotic subtilin is regulated by a histidine kinase/response regulator system. Appl. Environ. Microbiol. 59: 296–303

    PubMed  Google Scholar 

  • Kuipers OP, Beerthuyzen MM, Siezen RJ & Vos WMde (1993) Characterization of the nisin gene cluster nisABTCIPRK of Lactococcus lactis and evidence for the involvement of expression of the nisA and nisA genes in product immunity. Eur. J. Biochem. 216: 281–291

    PubMed  Google Scholar 

  • Lewis K (1994) Multidrug resistance pumps in bacteria: variations on a theme. TIBS 19: 119–123

    PubMed  Google Scholar 

  • Meyer C, Bierbaum G, Heidrich C, Reis M, Süling J, Iglesias-Wind M, Kempter C, Molitor E & Sahl H-G (1995) Nucleotide sequence of the lantibiotic Pep5 biosynthetis cluster, functional analysis of Pep% and PepC and evidence for a role of PepC in thioether formation. Eur. J. Biochem. (in press)

  • Mulders JWM, Boerrighter IJ, Rollema HS, Siezen RJ & Vos WMde (1991) Identification and characterization of the lantibiotic nisin Z, a natural nisin variant. Eur. J. Biochem. 201: 581–584

    PubMed  Google Scholar 

  • Nissen-Mayer J, Havarstein LS, Holo H, Sletten K & Nes IF (1993) Association of the lactococcin A immunity factor with the cell membrane: purification and characterization of the immunity factor. J. Gen. Microbiol. 139: 1503–1522

    PubMed  Google Scholar 

  • Mørtvedt CI, Nissen-Mayer J, Sletten K & Nes IF (1991) Purificiation and amino acid sequence of lactocin S, a bacteriocin produced by Lactobacillus sake L45. Appl. Environ. Microbiol. 57: 1829–1834

    Google Scholar 

  • Novak J, Caufield PW & Miller EJ (1994) Isolation and biochemical characterization of a novel lantibiotic mutacin from Streptococcus mutant. J. Bacteriol. 176: 4316–4320

    PubMed  Google Scholar 

  • Quadri LEN, Sailer M, Terebiznik MR, Roy KL, Vederas JC & Stiles ME (1995) Characterization of the protein conferring immunity to the antimicrobial peptide Carnobacteriocin B2 and expression of Carnobacteriocins B2 and BM1. J. Bacteriol. 177: 1144–1151

    PubMed  Google Scholar 

  • Reis M & Sahl H-G (1991) Genetic analysis of the producer self protection mechanism (‘immunity’) against Pep5. In: Jung G & Sahl H-G (Eds) Nisin and Novel Lantibiotics. (pp 320–332) ESCOM Leiden

    Google Scholar 

  • Reis M, Eschblach-Bludau M, Inglesias-Wind MI, Kupke T & Sahl H-G (1994) Producer immunity towards the lantibiotic Pep5: identification of the immunity gene pepI and localization and functional analysis of its gene product. Appl. Environ. Microbiol. 60: 2867–2883

    Google Scholar 

  • Rintala H, Graeffe T, Paulin L, Kalkkinen N & Saris PEJ (1993) Biosynthesis of nisin in the subtilin producer Bacillus subtilis ATCC6633. Biotechnology Lett. 15: 991–996

    Google Scholar 

  • Rauch PJG & Vos WMde (1992) Characterization of the novel nisin-sucrose conjugative transposon Tn5267 and its insertion in Lactococcus lactis. J. Bacteriol. 174: 1280–1287

    PubMed  Google Scholar 

  • Rince A, Dufour A, LePogam S, Thuault D, Bourgeois CM & LePennec JP (1994) Cloning, expression, and nucleotide sequence of genes involved in the production of lactococcin DR, a bacteriocin from Lactococcus lactis subsp. lactis. Appl. Environ. Microbiol. 60: 1652–1657

    PubMed  Google Scholar 

  • Ross KF, Ronson WC & Tagg JR (1993) Isolation and characterization of the lantibiotic salvaricin A and its structural gene salA from Streptococcus salvarius 20P3. Appl. Environ. Microbiol. 59: 2014–2021

    PubMed  Google Scholar 

  • Russell RRB, Aduse-Opoku J, Sutcliffe IC, Tao L & Ferretti JJ (1992) A binding protein-dependent transport system in Streptococcus mutans responsible for multiple sugar metabolism. J. Biol. Chem. 267: 4631–4637

    PubMed  Google Scholar 

  • Sahl H-G (1994) Staphylococcin 1580 is identical to the lantibiotic epidermin: implications for the nature of bacteriocins from grampositive bacteria. Appl. Environ. Microbiol. 60: 752–755

    PubMed  Google Scholar 

  • Saier MHJr (1994) Computer-aided analyses of transport protein sequences: Gleaning evidence concerning function, structure, biogenesis, and evolution. Microbiol. Rev. 58: 71–93

    PubMed  Google Scholar 

  • Schnell N, Engelke G, Augustin J, Rosenstein R, Ungerman V, Götz F & Entian K-D (1992) Analysis of genes involved in the biosynthesis of the lantibiotic epidermin. Eur. J. Biochem. 204: 57–68

    PubMed  Google Scholar 

  • Sibakov M, Koivula T, Wright Avon & Palva I (1991) Secretion of TEM β-lactamase with signal sequences isolated from the chromosome of Lactococcus lactis subsp. lactis. Appl. Environ. Microbiol. 57: 341–348

    PubMed  Google Scholar 

  • Siegers K & Entian K-D (1995) Genes involved in immunity to the lantibiotic nisin produced by Lactococcus lactis 6F3. Appl. Environ. Microbiol. 61: 1082–1089

    PubMed  Google Scholar 

  • Skaugen M (1994) Lactocin S: structure determination and genetic analysis. PhD thesis, As, Agricultural University of Norway

  • Song H-Y & Cramer WA (1991) Membrane topology of ColE1 gene products: The immunity protein. J. Bacteriol. 173: 2935–2943

    PubMed  Google Scholar 

  • Steen MT, Chung YJ & Hansen JN (1991) Characterization of the nisin gene as part of a polycistronic operon in the chromosome of Lactococcus lactis. Appl. Environ. Microbiol. 57: 1181–1188

    PubMed  Google Scholar 

  • Stoffels G, Nissen-Mayer J, Gudmundsdottir A, Sletten K, Helge H & Nes IF (1992) Purification and characterization of a new bacteriocin from a Carnobacterium sp. Appl. Environ. Microbiol. 58: 1417–1422

    PubMed  Google Scholar 

  • Sutcliffe IC, Tao L, Ferretti JJ & Russell RR (1993) MsME, a lipoprotein involved in sugar transport in Streptococcus mutans. J. Bacteriol. 175: 1853–1855

    PubMed  Google Scholar 

  • Tynkkynen S, Buist G, Kunij E, Kok J, Poolman B, Venem G & Haandrikman A (1993) Genetic and biochemical characterization of the oligopeptide transport system of Lactococcus lactis. J. Bacteriol. 175: 7523–7532

    PubMed  Google Scholar 

  • Vos WMde, Mulders JWM, Hugenholz J, Siezen RJ & Kuipers OP (1993) Properties of nisin Z and distribution of its gene, nisZ, in Lactococcus lactis. Appl. Environ. Microbiol. 59: 213–218

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joakim Saris, P.E., Immonen, T., Reis, M. et al. Immunity to lantibiotics. Antonie van Leeuwenhoek 69, 151–159 (1996). https://doi.org/10.1007/BF00399420

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00399420

Key words

Navigation