Skip to main content
Log in

Heat sensitivity and thermal adaptation of photosynthesis in liverwort thalli

  • Original Papers
  • Published:
Oecologia Aims and scope Submit manuscript

Summary

The effect of high temperatures on the photosynthetic apparatus of Preissia quadrata (Scop.) Nees, Conocephalum conicum (L.) Dum. and Marchantia polymorpha L. were investigated. changes in the activities of various photosynthetic reactions were followed by measuring light-dependent oxygen evolution, chlorophyll a fluorescence and light-induced absorbance changes at 518 nm.

Mild heat treatment of the thalli led to reversible depression of photosynthesis; the period necessary for complete recovery depended on the extent of heat damage. Irreversible inactivation of photosynthesis after more severe heat stress was caused by damage of photosystem II. On principle, the pattern of reversible and irreversible heat inactivation of photosynthetic reactions in liverwort thalli resembles that observed in leaves of higher plants. However, in contrast to a number of Spermatophyta, exposure of liverwort thalli to high sublethal temperatures did not result in a significant increase in the heat stability of the photosynthetic apparatus indicating that the heat hardening capacity of hygrophytic hepatics is extremely low.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexandrov VY (1977) Cells, molecules and temperature. Conformational flexibility of macromolecules and ecological adaptation. Ecological studies, vol 21. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Antropova TA (1974) Temperature adaptation studies on the cells of some bryophyte species. Tsitologiya 16:38–42 (in Russian)

    Google Scholar 

  • Bauer H (1972) CO2-Gaswechsel nach Hitzestreß bei Abies alba Mill. und Acer pseudoplatanus L. Photosynthetica 6:424–434

    Google Scholar 

  • Bauer H, Senser M (1979) Photosynthesis of ivy leaves (Hedera helix L.) after heat stress. II. Activity of ribulose bisphosphate carboxylase, Hill reaction and chloroplast ultrastructure. Z Pflanzenphysiol 91:359–369

    Google Scholar 

  • Berry J, Björkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Ann Rev Plant Physiol 31:491–543

    Article  Google Scholar 

  • Bilger H-W, Schreiber U, Lange OL (1984) Determination of leaf heat resistance: comparative investigation of chlorophyll fluorescence changes and tissue necrosis methods. Oecologia (Berlin) 63:256–262

    Google Scholar 

  • Dircksen A (1964) Vergleichende Untersuchungen zur Frost-, Hitze- und Austrocknungsresistenz einheimischer Laub- und Lebermoose unter besonderer Berücksichtigung jahreszeitlicher Veränderungen. Diss Göttingen

  • Hearnshaw GF, Proctor MCF (1982) The effect of temperature on the survival of dry bryophytes. New Phytol 90:221–228

    Google Scholar 

  • Junge W, Jackson JB (1982) The development of electrochemical potential gradients across photosynthetic membranes. In: Govindjee (ed) Photosynthesis, vol 1. Academic Press, New York, pp 589–646

    Google Scholar 

  • Kappen L (1981) Ecological significance of resistance to high temperature. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology, vol 1. Springer, Berlin Heidelberg, pp 439–474

    Google Scholar 

  • Krause GH, Santarius KA (1975) Relative thermostability of the chloroplast envelope. Planta 127:285–299

    Google Scholar 

  • Krause GH, Weis E (1984) Chlorophyll fluorescence as a tool in plant physiology. II. Interpretation of fluorescence signals. Photosynthesis Research 5:139–157

    Google Scholar 

  • Kulandaivelu G, Senger H (1976) The 520 nm absorbance changes in Scenedesmus obliquus and its relation to photosystem I. Biochim Biophys Acta 430:94–104

    PubMed  Google Scholar 

  • Lange OL (1955) Untersuchungen über die Hitzeresistenz der Moose in Beziehung zu ihrer Verbreitung. I. Die Resistenz stark ausgestrockneter Moose. Flora 142:381–399

    Google Scholar 

  • Lösch R, Kappen L (1983) Die Temperaturresistenz makaronesischer Sempervivoideae. Verh Ges Ökologie 10:521–528

    Google Scholar 

  • Nörr M (1974) Hitzeresistenz bei Moosen. Flora 163:388–397

    Google Scholar 

  • Santarius KA (1975) Sites of heat sensitivity in chloroplasts and differential inactivation of cyclic and noncyclic photophosphorylation by heating. J Thermal Biol 1:101–107

    Article  Google Scholar 

  • Santarius KA, Müller M (1979) Investigations on heat resistance of spinach leaves. Planta 146:529–538

    Google Scholar 

  • Schreiber U, Armond P (1978) Heat-induced changes of chlorophyll fluorescence in isolated chloroplasts and related heat-damage at the pigment level. Biochim Biophys Acta 502:138–151

    PubMed  Google Scholar 

  • Schreiber U, Berry JA (1977) Heat-induced changes of chlorophyll fluorescence in intact leaves correlated with damage of the photosynthetic apparatus. Planta 136:233–238

    Google Scholar 

  • Schuurmans JJ, Leeuwerik FJ, Sin Oen B, Kraayenhof R (1981) Deconvolution of the flash-induced carotinoid and oxonol VI responses in brocken chloroplasts. In: Akoyunoglou G (ed) Proceedings of the 5th International Congress on Photosynthesis, vol 1. Balaban International Sciences Services, Philadelphia, pp 543–552

    Google Scholar 

  • Umbreit WW, Burris RH, Staufer JF (1968) Manometric Techniques, 4 ed. Burgess Publ Co, Minneapolis

    Google Scholar 

  • Velthus BR (1978) A third site of proton translocation in green plant photosynthetic electron transport. Proc Natl Acad Sci USA 75:6031–6034

    Google Scholar 

  • Weis E (1981a) Reversible heat-inactivation of the Calvin cycle: a possible mechanism of the temperature regulation of photosynthesis. Planta 151:33–39

    Google Scholar 

  • Weis E (1981b) The temperature-sensitivity of dark-inactivation and light-activation of the ribulose-1, 5-bisphosphate carboxylase in spinach chloroplasts. FEBS Letters 129:197–200

    Article  Google Scholar 

  • Weis E (1981c) Reversible effects of high, sublethal temperatures on light-induced light scattering changes and electrochromic pigment absorption shift in spinach leaves. Z Pflanzenphysiol 101:169–178

    Google Scholar 

  • Weis E (1983) Investigations on the heat-sensitivity of thylakoid membranes in spinach leaves: the influence of light and short-time acclimatization to high temperatures. In: Marcelle R, Clijsters H, van Poucke M (eds) Effects of stress on photosynthesis. Martinus Nijhoff, Dr W Junk Publ, The Hague Boston London, pp 295–304

    Google Scholar 

  • Weis E (1984) Short term acclimation of spinach to high temperatures: effect on chlorophyll fluorescence at 293 and 77 Kelvin in intact leaves. Plant Physiol 74:402–407

    Google Scholar 

  • Weis E (1985) Light-and temperature-induced changes in the distribution of excitation energy between Photosystem I and Photosystem II in spinach leaves. Biochim Biophys Acta 807:118–126

    Google Scholar 

  • Yordanov IT, Weis E (1984) The influence of leaf-aging on the heat-sensitivity and heat-hardening of the photosynthetic apparatus in Phaseolus vulgaris. Z Pflanzenphysiol 113:383–393

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weis, E., Wamper, D. & Santarius, K.A. Heat sensitivity and thermal adaptation of photosynthesis in liverwort thalli. Oecologia 69, 134–139 (1986). https://doi.org/10.1007/BF00399049

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00399049

Keywords

Navigation