Skip to main content

The role of lectins in plant defence

Summary

Recent progress in the search for the physiological role of plant lectins supports the idea that some of these proteins are involved in the defence mechanisms of the plant. To place the evidence in favour of such a defensive role in a broad perspective, a short overview is given of the most important plant pathogens and predators. In addition, the solutions that plants have developed to resist the continuous threat of a hostile environment are briefly discussed in relation to the protective role of proteins in general. The presumed involvement of plant lectins in defence mechanisms is first inferred from an analysis of the biochemical, physiological, cellular biological and molecular biological properties of plant lectins. Subsequently, the available experimental evidence for the involvement of lectins in the plant's defence against viruses, bacteria, fungi and herbivorous invertebrates and vertebrates is discussed in some detail. Since the defensive role of plant lectins is determined largely by their ability to recognize and bind foreign glycans, a brief discussion is given of how the basically protective properties of these proteins can be exploited for histochemical applications in biological and biomedical research.

This is a preview of subscription content, access via your institution.

References

  • Ajouba, A., Causse, H., Van Damme, E. j. M., Peumans, W. J., Cambillau, C. & Rouge, P. (1994) Interactions of plant lectins with the components of the bacterial cell wall peptidoglycan. Biochem. Syst. EcoL. 22, 153–59.

    Article  Google Scholar 

  • Allen, A. D. (1983) Potato lectin — a glycoprotein with two domains. In Chemical taxonomy, Molecular Biology, and Function of Plant Lectins (edited by Goldstein, I. J. & Etzler, M. E.), pp. 71–85. New York: Alan R. Liss.

    Google Scholar 

  • Balasubramaniam, N. K., Czapla, T. H. & Rao, G. (1991) Structural and functional changes associated with cyanogen bromide treatment of wheat germ agglutinin. Arch. Biochem. BiophyS. 288, 374–9.

    PubMed  Google Scholar 

  • Balzarini, J., Schols, D., Neyts, J., Van Damme, E., Peumans, W. & De Clercq, E. (1991) α-(1–3)- and α-(1–6)-D-mannose-specific plant lectins are markedly inhibitory to human immunodeficiency virus and cytomegalovirus infections in vitro. Antimicrob. Agents ChemotheR. 35, 410–6.

    PubMed  Google Scholar 

  • Balzarini, J., Neyts, J., Schols, D., Hosoya, M., Van Damme, E., Peumans, W. K., De Clercq, E. (1992) The mannose-specific plant lectins from Cymbidium hybrid and Epipactis helleborine and the (N-acetylglucosamine)n-specific plant lectin from Urtica dioica are potent and selective inhibitors of human immunodeficiency virus and cytomegalovirus replication in vitro. Antiviral ReS. 18, 191–207.

    Article  PubMed  Google Scholar 

  • Barbieri, L., Batelli, G. B. & Stirpe, F. (1993) Ribosomeinactivating proteins from plants. Biochim. Biophys. Acta 1154, 237–82.

    PubMed  Google Scholar 

  • Beintema, J. J. & Peumans, W. J. (1992) The primary structure of stinging nettle (Urtica dioica) agglutinin: a two-domain member of the hevein family. FEBS LetT. 299, 131–4.

    Article  PubMed  Google Scholar 

  • Bohlmann, H., Clausen, S., Behnke, S., Giese, H., Hiller, C., Reihmann-philipp, U., Schrader, G., Barkholt, V. & Apel, K. (1988) Leaf-specific thionins of barley: a novel class of wall proteins toxic to plantpathogenic fungi and possibly involved in the defense mechanisms of plants. EMBO J. 7, 1559–65.

    Google Scholar 

  • Boulter, D. (1986) Isolation of genes involved in pest and disease resistance. In Biomolecular Engineering in the European Community (edited by Magnien, E.), pp. 715–25. Boston: Martinus Nijhoff.

    Google Scholar 

  • Boulter, D., Edwards, G. A., Gatehouse, A. m. R., Gatehouse, J. A. & Hilder, V. A. (1990) Additive protective effects of different plant-derived insect resistance genes in transgenic tobacco plants. Crop ProtecT. 9, 351–4.

    Article  Google Scholar 

  • Broekaert, W. F. & Peumans, W. J. (1986) Lectin release from seeds of Datura stramonium and interference of the Datura stramonium lectin with bacterial motility. In Lectins, Biology, Biochemistry, Clinical Biochemistry (edited by Bog-Hansen, T. C. & Van Driessche, E.), Vol. 5, pp. 57–65. Berlin: Walter de Gruyter & CO.

    Google Scholar 

  • Broekaert, W. F., Lambrechts, D., Verbelen, J.-P. & Peumans, W. J. (1988) Datura stramonium agglutinin. Location in the seed and release upon imbibition. Plant PhysioL. 86, 569–74.

    Google Scholar 

  • Broekaert, W. F., Van Parijs, J., Leyns, F., Joos, I. & Peumans, W. J. (1989) A chitin-binding lectin from stinging nettle rhizomes with antifungal properties. Science 245, 1100–2.

    Google Scholar 

  • Broekaert, W. F., Marien, W., Terras, F. R. G., De Bolle, M. F. C., Proost, P., Van Damme, J., Dillen, L., Claeys, M., Rees, S. B., Vanderleyden, J. & Cammue, B. p. A. (1992) Antimicrobiol peptides from Amaranthus caudatus seeds with sequence homology to the cysteine/glycine-rich domain of chitin-binding proteins. Biochemistry 31, 4308–14.

    PubMed  Google Scholar 

  • Broglie, K., Chet, I., Holliday, M., Cressman, R., Biddle, P., Knowlton, S., Mauvais, C. J. & Broglie, R. (1991) Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science 254, 1194–7.

    Google Scholar 

  • Cammue, B., Peeters, B. & Peumans, W. J. (1985) Isolation and partial characterization of an N-acetylgalactosamine-specific lectin from winter aconite (Eranthis hyemalis) root tubers. Biochem. J. 227, 949–55.

    PubMed  Google Scholar 

  • Cammue, B. P., Peeters, B. & Peumans, W. J. (1986) A new lectin from tulip bulbs. Planta 169, 583–8.

    Google Scholar 

  • Collinge, D. B., Kragh, K. M., Mikkelsen, J. D., Nielsen, K. K., Rasmussen, U. & Vad, K. (1993) Plant chitinases. Plant J. 3, 31–40.

    Article  PubMed  Google Scholar 

  • Cornelissen, B. J. & Melchers, L. S. (1993) Strategies for control of fungal diseases with transgenic plants. Plant PhysioL. 101, 709–12.

    PubMed  Google Scholar 

  • Czapla, T. I. & Lang, B. A. (1990) Effect of plant lectins on the larval development of European corn borer (Lepidoptera: Pyralidae) and southern corn rootworm (Coleoptera: Chrysomelidae). J. Econ. EntomoL. 83, 2480–5.

    Google Scholar 

  • De Wit, P. j. g. M. (1992) Molecular characterization of gene- for-gene systems in plant-fungus interactions and the application of avirulence genes in control of plant pathogens. Annu. Rev. PhytopathoL. 30, 391–418.

    Article  Google Scholar 

  • Dixon, R. A. (1986) The phytoalexin response: elicitation, signalling and control of host gene expression. Biol. ReV. 61, 239–91.

    Article  Google Scholar 

  • Endo, Y. (1989) Mechanism of action of ricin and related toxic lectins on the inactivation of eukaryotic ribosomes. In Advances in Lectin Research (edited by Franz, I.), Vol. 2, pp. 60–73. Berlin: VEB Verlag.

    Google Scholar 

  • Etzler, M. E. (1986) Distribution and function of plant lectins. In The Lectins: Properties, Functions and Applications in Biology and Medicine (edited by Liener, I. E., Sharon, N. K. & Goldstein, I. J.), pp. 371–435. New York: Academic Press.

    Google Scholar 

  • Franz, I. (1989) Viscaceae lectins. In Advances in Lectin Research (edited by Franz, I.), Vol. 2, pp. 28–59. Berlin: VEB Verlag.

    Google Scholar 

  • Gabriel, D. W. & Rolfe, B. G. (1990) Working models of specific recognition in plant-microbe interactions. Annu. Rev. PhytopathoL. 28, 365–91.

    Article  Google Scholar 

  • Gatehouse, A. M. R., Dewey, F. M., Dove, J., Fenton, K. A. & Pusztai, A. (1984) Effect of seed lectins from Phaseolus vulgaris on the development of larvae of Callosobruchus maculatus; mechanism of toxicity. J. Sci. Food AgriC. 35, 373–80.

    Google Scholar 

  • Gatehouse, A. M. R., Barbieri, L., Stirpe, F. & Croy, R. r. D. (1990) Effects of ribosome inactivating proteins on insect development - differences between Lepidoptera and Coleoptera. Entomol. Exp. AppL. 54, 43–51.

    Google Scholar 

  • Gatehouse, A. m. R., Howe, D. S., Flemming, J. E., Hilder, V. A. & Gatehouse, J. A. (1991) Biochemical basis of insect resistance in winged bean (Psophocarpus tetragonolobus) seeds. J. Sci. Food AgriC. 55, 63–74.

    Google Scholar 

  • Gatehouse, A. M. R., Powell, K. S., Van Damme, E. J. M., Peumans, W. J. & Gatehouse, J. A. (1995) Insecticidal properties of plant lectins: their potential in plant protection. In Lectins, Biomedical Perspectives (edited by Puszati, A.), Francis & Taylor (in press).

  • Goldstein, I. J. & Poretz, R. D. (1986) Isolation, physicochemical characterization and carbohydratebinding specificity of lectins. In The Lectins: Properties, Functions, and Applications in Biology and Medicine (edited by Liener, I. E., Sharon, N. & Goldstein, I. J.), pp. 33–248. New York: Academic Press.

    Google Scholar 

  • Greenwood, J. S., Stinissen, H. M., Peumans, W. J. & Chrispeels, M. J. (1986) Sambucus nigra agglutinin is located in protein bodies in the phloem parenchyma of bark. Planta 167, 275–8.

    Google Scholar 

  • Huesing, J. E., Shade, R. E., Chrispeels, M. J. & Murdock, L. L. (1991a) α-Amylase inhibitor, not phytohemagglutinin, explains resistance of common bean seeds to cowpea weevil. Plant PhysioL. 96, 993–6.

    Google Scholar 

  • Huesing, J. E., Murdock, L. L. & Shade, R. E. (1991b) Effect of wheat germ isolectins on development of cowpea weevil. Phytochemistry 30, 785–8.

    Article  Google Scholar 

  • Huesing, J. E., Murdock, L. L. & Shade, R. E. (1991c) Rice and stinging nettle lectins: insecticidal activity similar to wheat germ agglutinin. Phytochemistry 30, 3565–8.

    Article  Google Scholar 

  • Janzen, D. I., Juster, H. B. & Liener, I. E. (1976) Insecticidal action of the phytohemagglutinin in black beans on a bruchid beetle. Science 192, 795–6.

    PubMed  Google Scholar 

  • Kaku, I., Peumans, W. J. & Goldstein, I. J. (1990) Isolation and characterization of a second lectin (SNA-II) present in elderberry (Sambucus nigra L.) bark. Arch. Biochem. biophyS. 277, 255–62.

    PubMed  Google Scholar 

  • Knibbs, R., Goldstein, I. J., Ratcliff, R. M. & Shibuya, N. (1991) Characterization of the carbohydrate binding specificity of the leukoagglutinating lectin from Maackia amurensis. J. Biol. CheM. 266, 83–8.

    PubMed  Google Scholar 

  • Kumar, M. A., Timms, D. E., Neet, K. E., Owen, W. G., Peumans, W. J. & Rao, A. G. (1993) Characterization of the lectin from the bulbs of Eranthis hyemalis (winter aconite) as an inhibitor of protein synthesis. J. Biol. CheM. 268, 25176–83.

    PubMed  Google Scholar 

  • Lamb, C. J., Lawton, M. A., Dorn, M. & Dixon, R. A. (1989) Signals and transduction mechanisms for activation of plant defenses against microbiol attack. Cell 56, 215–24.

    Article  PubMed  Google Scholar 

  • Leah, R., Tommerup, I., Svedsen, I. & Mundy, J. (1991) Biochemical and molecular characterization of three barley seed proteins with antifungal properties. J. Biochem. CheM. 266, 1564–73.

    Google Scholar 

  • Liener, I. E. (1986) Nutritional significance of lectins in the diet. In The Lectins: Properties, Functions, and Applications in Biology and Medicine (edited by Liener, I. E., Sharon, N. & Goldstein, I. J.), pp. 527–52. New York: Academic Press.

    Google Scholar 

  • Linthorst, H. j. M. (1991) Pathogenesis-related proteins of plants. Crit. Rev. Plant ScI. 102, 123–50.

    Google Scholar 

  • Lord, M. (1985) Synthesis and intracellular transport of lectin and storage protein precursors in endosperm from castor bean. Eur. J. BiocheM. 146, 403–9.

    PubMed  Google Scholar 

  • Maddock, S. E., Huffman, G., Isenhour, D. J., Roth, B. A., Raikhel, N. V., Howard, J. A. & Czapla, T. H. (1991) Expression in maize plants of wheat germ agglutinin, a novel source of insect resistance. Third International Congress for Plant Molecular Biology, Tucson, AZ, USA, abstract No. 372.

  • Mirelman, D., Galun, E., Sharon, N. & Lotan, R. (1975) Inhibition of fungal growth by wheat germ agglutinin. Nature 256, 414–6.

    PubMed  Google Scholar 

  • Mishkind, M., Keegstra, K. & Palevitz, V. (1980) Distribution of wheat germ agglutinin in young wheat plants. Plant PhysioL. 66, 950–5.

    Google Scholar 

  • Mishkind, M., Raikhel, N. V., Palevitz, B. A. & Keegstra, K. (1982) Immunocytochemical localization of wheat germ agglutinin in wheat. J. Cell. BioL. 92, 753–64.

    Article  PubMed  Google Scholar 

  • Mishkind, M., Palevitz, B., Raikhel, N. V. & Keegstra, K. (1983) Localization of wheat germ agglutinin-like lectins in various species of the Gramineae. Science 220, 1290–2.

    Google Scholar 

  • Moreno, J. & Chrispeels, M. J. (1989) A lectin gene encodes the α-amylase inhibitor of the common bean. Proc. Natl Acad. Sci. USA 86, 7885–9.

    PubMed  Google Scholar 

  • Moreno, J., Altabella, T. & Chrispeels, M. J. (1990) Characterization of α-amylase-inhibitor, a lectin-like protein in the seeds of Phaseolus vulgaris. Plant PhysioL. 92, 703–9.

    Google Scholar 

  • Murdock, L. L., Huesing, J. E., Nielsen, S. S., Pratt, R. C. & Shade, R. E. (1990) Biological effects of plant lectins on the cowpea weevil. Phytochemistry 29, 85–9.

    Article  Google Scholar 

  • Nsimba-Lubaki, M. & Peumans, W. J. (1986) Seasonal fluctuations of lectin in bark of elderberry (Sambucus nigra) and black locust (Robinia pseudoacacia). Plant PhysioL. 80, 747–51.

    Google Scholar 

  • Nsimba-Lubaki, M., Allen, A. K. & Peumans, W. J. (1986) Isolation and characterization of glycoprotein lectins from the bark of three species of elder, Sambucus ebulus, Sambucus nigra and Sambucus racemosa. Planta 168, 113–8.

    Google Scholar 

  • Osborn, T. C., Sun, A. d. C., Cardona, S. s. M. & Bliss, F. A. (1988) Insecticidal activity and lectin homology of arcelin seed protein. Science 240, 207–10.

    Google Scholar 

  • Peumans, W. J., De Ley, M. & Broekaert, W. F. (1984a) An unusual lectin from stinging nettle (Urtica dioica) rhizomes. FEBS LetT. 177, 99–103.

    Article  Google Scholar 

  • Peumans, W. J., Nsimba-lubaki, M., Carlier, A. R. & Van Driessche, E. (1984b) A lectin from Bryonia dioica root stocks. Planta 160, 222–8.

    Google Scholar 

  • Peumans, W. J., Nsimba-Lubaki, M., Peeters, B. & Broekaert, W. F. (1985) Isolation and partial characterization of a lectin from Aegopodium podagraria rhizomes. Planta 164, 75–82.

    Google Scholar 

  • Peumans, W. J., Nsimba-Lubaki, M., Broekaert, W. F. & Van Damme, E. J. M. (1986) Are bark lectins of elderberry (Sambucus nigra) and black locust (Robinia pseudoacacia) storage proteins? In Molecular Biology of Seed Storage Proteins and Lectins (edited by Shannon, L. M. & Chrispeels, M. J.), pp. 53–63. Proceedings of the 9th Annual Symposium in Plant Physiology, UCR Riverside.

  • Powell, K. S., Gatehouse, A. m. R., Hilder, V. A. & Gatehouse, J. A. (1993) Antimetabolic effects of plant lectins and plant and fungal enzymes on the nymphal stages of two important rice pests, Nilaparvata lugens and Nephotettix cinciteps. Entomol. Exp. AppL. 66, 119–26.

    Google Scholar 

  • Pratt, R. C., Singh, N. K., Shade, R. E., Murdock, L. L. & Bressan, R. A. (1990) Isolation and partial characterization of a seed lectin from tepary bean that delays bruchid beetle development. Plant PhysioL. 93, 1453–9.

    Google Scholar 

  • Pusztai, A. (1986) The role in food poisoning of toxins and allergens from higher plants. In Developments in Food Microbiology (edited by Robinson, R. K.), pp. 179–94. London: Elsevier Applied Science Publishers.

    Google Scholar 

  • Pusztai, A. (1991) Plant Lectins. Cambridge: Cambridge University Press.

    Google Scholar 

  • Pusztai, A., Clarke, E. m. W. & King, T. P. (1979) The nutritional toxicity of Phaseolus vulgaris lectins. Proc. Nutr. SoC. 38, 115–20.

    PubMed  Google Scholar 

  • Pusztai, A., Ewen, S. w. B., Grant, G., Peumans, W. J., Van Damme, E. j. M., Rubio, L. & Bardocz, S. (1990) The relationship between survival and binding of plant lectins during small intestine passage and their effectiveness as growth factors. Digestion 46, 308–16.

    PubMed  Google Scholar 

  • Pusztai, A., Ewen, S. w. B., Grant, G., Peumans, W. J., Van Damme, E. j. M., Rubio, L. A. & Bardocz, S. (1991) Plant (food) lectins as signal molecules: Effects on the morphology and bacterial ecology of the small intestine. In Lectin Reviews (edited by Kilpatrick, D. C., Van Driessche, E. & Bog-Hansen, T. C.), Vol. 1, pp. 1–15. St Louis, USA: Sigma Chemical CO.

    Google Scholar 

  • Pusztai, A., Ewen, S. w. B., Grant, G., Brown, D. S., Peumans, W. J., Van Damme, E. J. M. & Bardocz, S. (1992) Stimulation of growth and polyamine accretion in the small intestine and pancreas by lectins and trypsin inhibitors. In Polyamines in the Gastrointesinal Tract (edited by Dowling, R. I., Folsch, U. R. & Loser, C.), Dordrecht: Falk symposium Ser. No. 62, pp. 473–83. Kluwer Academic Publishers.

    Google Scholar 

  • Pusztai, A., Ewen, S. w. B., Grant, G., Brown, D. S., Stewart, J. C., Peumans, W. J., Van Damme, E. j. M. & Bardocz, S. (1993a) Antinutritive effects of wheat germ agglutinin and other N-acetylglucosamine specific lectins. Br. J. NutriT. 70, 313–21.

    Google Scholar 

  • Pusztai, A., Grant, G., Spencer, R. J., Duguid, T. J., Brown, D. S., Ewen, S. w. B., Peumans, W. J., Van Damme, E. j. M. & Bardocz, S. (1993b) Kidney bean lectin-induced Escherichia coli overgrowth in the small intestine is blocked by GNA, a mannose-specific lectin. J. Appl. BacterioL. 75, 360–8.

    PubMed  Google Scholar 

  • Rüdiger, I. (1988) Preparation of plant lectins. In Advances in Lectin Research (edited by Frantz, I.), Vol. 1, pp. 26–72. Berlin: VEB Verlag.

    Google Scholar 

  • Ryan, C. A. (1990) Protease inhibitors in plants: genes for improving defenses against insects and pathogens. Annu. Rev. PhytopathoL. 28, 426–49.

    Article  Google Scholar 

  • Sandhu, R. S., Arora, J. S., Chopra, S. K., Pelia, S. S., Kamboj, S. S., Naidu, Y. C. & Nath, I. (1990) New sources of lectins from Araceous Indian plants. In Lectins, Biology, Biochemistry, Clinical Biochemistry (edited by Kocourek, J. & Freed, D. l. J.), Vol. 7, pp. 19–26, St Louis, USA: Sigma Chemical CO.

    Google Scholar 

  • Schlumbaum, A., Mauch, F., Vogeli, U. & Boller, T. (1986) Plant chitinases are potent inhibitors of fungal growth. Nature 324, 365–7.

    Google Scholar 

  • Sequeira, L. & Graham, T. L. (1977) Agglutination of avirulent strains of Pseudomonas solanacearum by potato lectin. Physiol. Plant PathoL. 11, 43–54.

    Google Scholar 

  • Shibuya, N., Goldstein, I. J., Broekaert, W. F., Nsimba-Lubaki, M., Peeters, B. & Peumans, W. J. (1987) The elderberry (Sambucus nigra) bark lectin recognizes the Neu5Ac (α2–6)Gal/GalNac sequence. J. Biol. CheM. 262, 1596–601.

    PubMed  Google Scholar 

  • Shotwell, M. A. & Larkins, B. A. (1989) The biochemistry and molecular biology of seed storage proteins. In The Biochemistry of Plants (edited by Stumpf, P. K. & Conn, E. E.), pp. 297–345. New York: Academic Press.

    Google Scholar 

  • Van Damme, E. j. M. & Peumans, W. J. (1989) Developmental changes and tissue distribution of lectin in Tulipa. Planta 178, 10–8.

    Google Scholar 

  • Van Damme, E. j. M. & Peumans, W. J. (1990) Developmental changes and tissue distribution of lectin in Galanthus nivalis L. and Narcissus Cv. Carlton. Planta 182, 605–9.

    Google Scholar 

  • Van Damme, E. j. M., Allen, A. K. & Peumans, W. J. (1987) Isolation and characterization of a lectin with exclusive specificity towards mannose from snowdrop (Galanthus nivalis) bulbs. FEBS LetT. 215, 140–4.

    Article  Google Scholar 

  • Van Damme, E. j. M., Goldstein, I. J. & Peumans, W. J. (1991) Comparative study of related mannose-binding lectins from Amaryllidaceae and Alliaceae species. Phytochemistry 30, 509–14.

    Article  Google Scholar 

  • Van Driessche, E. (1988) Structure and function of leguminosae lectins. In Advances in Lectin Research (edited by Franz, I.), Vol. 1, pp. 73–134. Berlin: VEB Verlag.

    Google Scholar 

  • Van Parijs, J., Broekaert, W. F., Goldstein, I. J. & Peumans, W. J. (1991) Hevein: an antifungal protein from rubber-tree (Hevea brasiliensis) latex. Planta 183, 258–62.

    Google Scholar 

  • Van Parijs, J., Joosen, H. M., Peumans, W. J., Geuns, J. M. & Van Laere, A. J. (1992) Effect of the lectin UDA (Urtica dioica agglutinin) on germination and cell wall formation of Phycomyces blakesleeanus Burgeff. Arch. MicrobioL. 158, 19–25.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Peumans, W.J., Van Damme, E.J.M. The role of lectins in plant defence. Histochem J 27, 253–271 (1995). https://doi.org/10.1007/BF00398968

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00398968

Keywords

  • Defence Mechanism
  • Veterinary Medicine
  • Protective Role
  • Biological Property
  • Physiological Role