Skip to main content

All local classical symmetries in Hamiltonian mechanics

Abstract

Using the formalism of symplectic group actions and coadjoint orbits, we give a complete list of all classical simple Lie algebras which are local symmetries for a given Hamiltonian vector field.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Lie, S., Theorie der Transformationsgruppen I, II, III, Chelsea Publ., New York, 1970.

    Google Scholar 

  2. 2.

    Eisenhart, L.P., Continuous Groups of Transformations, Princeton Univ. Press, Princeton, New Jersey, 1933.

    Google Scholar 

  3. 3.

    Rosen, J., Nuovo Cimento 49A, 614 (1967).

    Google Scholar 

  4. 4.

    Mukunda, N., J. Math. Phys. 8, 1069 (1967).

    Google Scholar 

  5. 5.

    Caratu, G., Marmo, G., Simoni, A., Vitale, B., and Zaccharia, F., Nuovo Cimento 19B, 228 (1974).

    Google Scholar 

  6. 6.

    Wolf, J.A., ‘Representations Associated to Minimal Coadjoint Orbits’, in Lect. Notes in Math. 676, Springer, New York, 1970.

    Google Scholar 

  7. 7.

    Souriau, J.-M., Structure des Systèmes Dynamiques, Dunod, Paris, 1970.

    Google Scholar 

  8. 8.

    Abraham, R. and Marsden, J., Foundations of Mechanics, Benjamin, Reading, Massachusetts, 1978.

    Google Scholar 

  9. 9.

    Robbin, J.W., ‘Symplectic Mechanics’, in Global Analysis and its Applications III, IAEA, Vienna, 1974.

    Google Scholar 

  10. 10.

    Palais, R.S., ‘A Global Formulation of the Lie Theory of Transformation Groups’, Mem. Am. Math. Soc. 22 (1957).

  11. 11.

    Helgason, S., Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York, 1978.

    Google Scholar 

  12. 12.

    Fradkin, D.M., Progr. Theoret. Phys. 37, 798 (1967).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Aguirre, E., Doebner, H.D. & Hennig, J.D. All local classical symmetries in Hamiltonian mechanics. Lett Math Phys 7, 85–90 (1983). https://doi.org/10.1007/BF00398716

Download citation

Keywords

  • Statistical Physic
  • Vector Field
  • Group Action
  • Group Theory
  • Complete List