Skip to main content
Log in

On log-Sobolev inequalities for infinite lattice systems

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

For a system on an infinite lattice, we show that a Gibbs measure μ for a smooth local specification ℰ={E Λ}Λ∈ℱ satisfying the Dobrushin uniqueness theorem also satisfies log-Sobolev inequality, provided it is satisfied for one-dimensional measures E l ∈ℰ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. GrossL., Logarithmic Sobolev inequalities, Am. J. Math. 97, 1061–1083 (1976).

    Google Scholar 

  2. Carlen, E. A. and Stroock, D. W., An application of the Bakry-Emery criterion to infinite dimensional diffusions, in J. Azema and M. Yor (eds.), Sem. de Probabilities XX, LNM 1204, Springer, New York, pp. 341–348.

  3. BakryD. and EmeryM., Hypercontractivité de semi-groupes des diffusion, C.R. Acad. Sci. Paris Ser I 299, 775–777 (1984).

    Google Scholar 

  4. NelsonE., The free Markov field, J. Funct. Anal. 12, 211–227 (1973).

    Google Scholar 

  5. SimonB. and Hoegh-KrohnR., Hypercontractive semigroups and two-dimensional self-coupled Bose fields, J. Funct. Anal. 9, 121–180 (1972).

    Google Scholar 

  6. RothausO. S., Logarithmic Sobolev inequalities and the spectrum of Schrödinger Operators, J. Funct. Anal. 42, 110–120 (1981).

    Google Scholar 

  7. WeisslerF., Logarithmic Sobolev inequalities and hypercontractive estimates on the circle, J. Funct. Anal. 37, 218–234 (1980).

    Google Scholar 

  8. CarmonaR., Regularity properties of Schrödinger and Dirichlet semigroups, J. Funct. Anal. 33, 259–296 (1979).

    Google Scholar 

  9. Davies, E. B., Gross, L., and Simon, B., Hypercontractivity. A bibliographic review, to appear in proceedings of the Hoegh-Krohn Memorial Conference.

  10. DobrushinR. L., Prescribing a system of random variables by conditional distributions, Theor. Prob. Appl. 15, 453–486 (1970); The problem of uniqueness of a Gibbs random field and the problem of phase transition, Funct. Anal. Appl. 2, 302–312 (1986).

    Google Scholar 

  11. Landford, O. E. III., Entropy and equilibrium states in classical statistical mechanics, in Lenard A. (ed.), Statistical Mechanics and Mathematical Problems, LNPh 20, Springer, New York, pp. 1–113.

  12. FöllmerH., A covariance estimate for Gibbs measures, J. Funct. Anal. 46, 387–395 (1982).

    Google Scholar 

  13. Föllmer, H., Phase transition and Martin boundary, in Sem. Probabilité Strasbourg IX, LNM 465, Springer, New York.

  14. Preston, Ch., Random Fields., LNM 534, Springer, New York.

  15. Zegarlinski, B., Dobrushin uniqueness theorem and log-Sobolev inequalities, Preprint Nov. 1989.

  16. HolleyR. A. and StroockD. W., Logarithmic Sobolev inequalities and stochastic Ising models, J. Stat. Phys. 46, 1159–1194 (1987); Uniform and L 2 convergence in one-dimensional stochastic Ising models, Comm. Math. Phys. 123, 85–93 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zegarlinski, B. On log-Sobolev inequalities for infinite lattice systems. Lett Math Phys 20, 173–182 (1990). https://doi.org/10.1007/BF00398360

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00398360

AMS subject classification (1980)

Navigation